
1

Flashback: A Peer-to-Peer Web Server for Flash
Crowds

Mayur Deshpande, Abhishek Amit, Mason Chang, Nalini Venkatasubramanian, and Sharad Mehrotra
University of California, Irvine

email: {mayur,aamit,nalini,sharad}@ics.uci.edu,{changm}@uci.edu

Abstract— We present Flashback, a ready-to-use system for
scalably handling large unexpected traffic spikes on web-sites.
Unlike previous systems, our approach does not rely on any in-
termediate nodes to cache content. Instead, the clients (browsers)
create a dynamic, self-scaling Peer-to-Peer (P2P) web-server that
grows and shrinks according to the load. This approach translates
into a challenging problem – a P2P data exchange protocol that
can operate in churn rates where more than 90% of peers can
leave the overlay in under 10 seconds. This is atleast an order of
magnitude higher churn rate than previously addressed research.
Additionally, our system operates under two strict constraints –
users are assured that they upload only as much as they download
and second, end-user browsing experience is preserved, i.e., low
latency downloads and zero configuration or download of any
software. We believe these are very important for wide acceptance
of the system.

Various innovations were required to meet these challenges.
Key among them are (a) A TCP-friendly, UDP protocol (Roulette)
for Tit-For-Tat data exchange under extreme churn, (b) A
novel data structure (NOIS) for partial-data management, (c) A
distributed hole-punching protocol for automatic NAT traversal
and (d) Automatic rendering of webpages using a technique we
call the transported frame hack. Experimental results show the
effectiveness and near optimal scaling of Flashback. For a web-
server (and clients) running on a DSL-like connection, end-user
latency increases only one second for every doubling in web-
server load.

Index Terms— Peer-to-Peer, Web-Server, Content Distribution,
Churn, Tit-For-Tat, Overlay Maintenance, Scalability

Relevant Technical Area(s)
Peer-to-Peer, Web-Server, Overlay Protocol Design, Wide-Area

Networks, Content Distribution

I. I NTRODUCTION

Handling sudden spike or flash loads is an ubiquitous
problem for web-site hosters. High-traffic sites usually over-
provision their bandwidth and CPU to handle the spike load.
However, even these sites sometimes face unexpectedly high
flashes. For example, on 9/11, many leading news sites buckled
under the flash load and were forced to scale down the content
on their sites. Other web-site hosters use paid third-party
service providers (e.g. Akamai [5]) to handle the distribution
of ‘rich media’. This is in addition to the web-caches (e.g.
Squid1) and proxies that many ISPs and organizations already
maintain. Recently, Peer-to-Peer (P2P) content distribution
systems based on volunteer machines have also been proposed
and deployed (e.g. Coral Cache [13], Squirrel [16], etc.).

1http://www.squid-cache.org/

The underlying idea among all these approaches is to
replicate or cache the data and shift the load away from the
web-server to a set of intermediate nodes in the network. End
user browsers first contact these intermediate cache nodes (or
proxies) after checking the local browser cache. If content is
already present at these cache nodes and if it isfresh, then the
content is served directly from the cache, saving the original
web-server from the request. However, the end-user browsers
still do not share, in any way, the load that they create in the
first place. Apart from a philosophical fairness issue, cache-
based approaches also suffer certain tangible drawbacks. First,
the number of caching nodes (and their current load) dictates
the scalability of the system. Second, some web-sites may not
favor caching of their data – especially, if hit-count and end-
user statistics directly translate to advertising related revenue.
If the site setsno-cacheon its web-pages, then the cache nodes
have to get the web-page from the original server for each
request from end users. In this pathological case, the end-user
latency actually increases as compared to when there are no
intermediate cache nodes.

In this paper we explore the simple idea of distributing the
flash load back to the end user browsers (hence the name
Flashback for our system). Such a system is potentially self-
scalable – as the load increases the system scales to meet
the demand. Secondly, in such a system all end-user requests
can be logged by the web-server if need be and third, this
system would work well even if the web-page was set not to
be cached.

The lure of a cache-less (free of cache nodes) approach has
spurred ideas and techniques on how such a system might be
developed ([17], [22], [21], [30]). However, these systems
suffer certain drawbacks. First, they assume the users will be
co-operative and stay in the P2P for a certain period of time.
Second, they do not address the issue of users being behind
Network Address Translation (NAT) devices which block
incoming connections. Third, they are either not transparent
to the user (require to setup a proxy or download some
software) or require changes to HTTP. To the best of our
knowledge, Flashback is the first out-of-the-box deployable
and working system that is capable of preserving the user’s
browsing experience while making no assumptions that the
peer will be co-operative.

Unlike a web-cache system, a cache-less system faces a
different set of challenges. In a web-cache system (both
infrastructure and P2P approach) a set of intermediate nodes
maintain full copies of popular web objects. The main prob-

2

lem, here, then is that of finding the particular intermediate
node fast enough that holds the needed web object. Secondary
problems include that of cache-replication (how to replicate
web-objects according to their demand) and cache-eviction
(deciding which ‘old’ web-objects to evict to make room for
the new and in-demand web-objects).

In a cache-less system, all end-user nodes that visit a partic-
ular web-site are interested in the same web-object. Thus the
problems of cache-replication and cache-eviction disappear.
Instead, the problem, now, is finding the set of other end-
user nodes dynamically who might be able to supply the web-
object. If the nodes are non-cooperative or selfish, however,
then there are no nodes that posses the whole web-object –
once a node gets the whole object, it can refuse to supply
the object to anyone else (a problem not addressed by the
original psuedoserving [17] proposal or even CoopNet [21]).
The solution to this is tochunk the web object into smaller
pieces and have the end-nodes exchange the pieces with each
other. This kind of chunk-based, tit-for-tat incentive based
policy is a popular technique used in large-file P2P content
distribution systems (such as BitTorrent [1]).

The question, then is, whether a protocol like BitTorrent can
be used in the design of a cache-less system. We argue that
while such a system is possible, it would not be very popular.
BitTorrent is designed for dissemination of large files and
where peers spend many hours in the system. In contrast, web-
pages are usually small (ranging from tens of KBs to hundreds
of KBs). Secondly, the web-page must be downloaded and
displayed in the order of seconds for a normal web experience.
Consequently, peers participate in the system in the order
of seconds. Within this extremely small time frame, an end-
user node must be able to find other nodes and successfully
utilize its bandwidth to download the web-object as fast as
possible. The crux of the problem in a cache-less system is
therefore that of successfully being able to find other peers and
exchange data in an extremely high rate of churn. BitTorrent
is not designed for this extreme churn and, as we show in our
experiments, this results in large end-user latency (to download
a web page) that is way beyond the patience of an normal
web-user.

To address this research challenge, we propose Roulette,
a UDP based P2P content distribution protocol that is able
to operate under extreme churn to distribute even small files
(couple of KBs to hundreds of KBs) with low latency and
in a Tit-For-Tat manner. Roulette employs a unique overlay
construction and maintenance mechanism using a stochastic
revolving neighbor cache (hence its name) that is strongly tied
to data transfer. Roulette uses UDP to solve another critical
design constraint – that the end-user should not be asked to
download or configure any software when using Flashback,
i.e., a seamless web-browsing experience. Many end-users are
behind NAT (Network Address Translation) devices. These
devices block uninitiated incoming connections. Thus, current
P2P systems require the end-user to be fairly sophisticated in
understanding this technology and require them to ‘open up’
certain ports on their NAT devices. Techniques to do automatic
NAT traversal are therefore popular to remove this burden from
the user. A technique calledhole-punching [12]is particularly

effective but it works best with UDP. TCP hole punching is
also possible though much more unreliable. To maximize the
utility and acceptance of Flashback, we decided the whole
protocol would be based on UDP. In addition, we also came
up with a new distributed hole punching protocol to relieve one
central server from participating in each hole punch request.

The decision to base Roulette on UDP had a cascading
effect on the design of Flashback. Roulette now had to be
explicitly designed to do flow and congestion control (we
skipped error recovery) to be friendly to other TCP traffic.
Further, this decision catalyzed a design for a more flexible and
compact chunk management sub-system. Flashback, therefore
manages chunk information in intervals using a novel data
structure we call NOIS (Non-Overlapping Interval Skiplist).
NOIS allows efficient data exchange in an almost stateless
manner and facilitates easy flow control.

We tie all the different components into one system that
preserves end-user browsing experience. When a user visits
an overloaded site that is running Flashback, she is served a
modified web-page and a small applet that contains the code
for the Flashback peer and a stripped down web-server. The
original web-page is then downloaded by the flashback peer
and served up by the local web-server to the browser. All this
works seamlessly through a technique we call the transported
frame hack.

In summary, our main contributions are

• A fully functional and deployed system, Flashback, that
can distribute web-pages scalably without intermediate
caches

• Roulette: A UDP based content dissemination P2P pro-
tocol that works in extreme churn

• A novel data structure, Non-Overlapping Interval Skiplist
(NOIS) for chunk data management

• A distributed hole punching protocol for automatic NAT
traversal

• A technique, Transported-frame hack, to seamlessly re-
cruit browsers as web-servers and display web-pages
without user intervention

The rest of the paper is organized as follows. In Sec-II we
present an overview of Flashback, how it works and meets
the requirements for a seamless browsing experience. In Sec-
III, we describe the problem with extreme churn and the
specific techniques in Roulette designed for handling it. In
Sec-IV, we describe the Roulette protocol in full and compare
it to BitTorrent and normal client-server system in Sec-V. We
explore related work in Sec-VI and conclude in Sec-VII

II. FLASHBACK OVERVIEW

Flashback is designed from the ground-up to be easy to use
for the end-user while also being easy to deploy on the server
side. We first describe the major goals of Flashback and an
overview of how the whole system works.

Goals of Flashback: The two main goals of Flash-
back are : (1) Unchanged user web-browsing experience and
(2) A ready-to-use system that can be deployed and used
immediately. Taken together, these goals meant that Flash-
back needed to work across different operating systems and

3

browsers unchanged (or a change to the HTTP protocol, like
Overhaul). Secondly, the system should preserve the browsing
experience and not require any more expertise than is required
for simple browsing. For example, it should not require users
to remember and append a URL to access another URL (like
in Coral Cache) or install new software (like Dijjer [11]). We
now describe how Flashback works and meets these two goals.

A. How Flashback Works

A user who needs content from an overloaded web-server
must participate in Flashabck where he/she downloads and
uploads data to other users. This is similar to P2P content
distribution systems such as BitTorrent [1] (BT) where the
peers trade data amongst each other to reconstruct the original
file – in effect acting as servers themselves and reducing the
bandwidth load of the original server. However, to maintain
our constraint thatany user be able to participate, the user
should not have to download, setup or configure a third-party
software. Thus, we dynamically recruit the browser itself to
be part of the P2P system. We evaluated two alternatives to
achieve this: (1) Write extensions to all popular browsers to
incorporate the P2P software or (2) Dynamically load the
functionality into the browser via Java Applets. We chose
(2) for several reasons. First, using Java-applet technology is
probably the most Browser/Platform independent way to load
functionality into the browser. Second, loading of applets can
be made transparent so that the user does not have to install
any plugins or extensions and thus deployment of the system
in independent of the end-users (of course, assuming that users
already have Java plugin installed).

We explain the flow of data in Flashback using Fig-1.
When the end-user browser visits a Flashback-enabled web-
site (Step-1), say ‘http://abc.xyz.edu/hot.html’, a ‘two-frame’
web-page is served to the browser (Step-2). One frame is
invisible due to zero pixel height and other frame (initially a
blank page) takes up all the visible real estate on the browser.
The invisible frame is instructed to download and initialize
the Flashback applet. The Flashback applet is made up of two
main components: (a) Code that runs a Flashback-peer and (b)
A tiny web-server (called Pygmy2)) that starts on the localhost
(127.0.0.1:9000) (and thus not accessible from outside). After
the applet initializes both the components, it instructs the large
visible frame to display ‘http://127.0.0.1:9000/hot.html’(Step-
3). Thus the applet automatically rewrites the initial URL
to point to the local web server. This call from the applet
is handled by the browser which makes a HTTP-request to
pygmy (Step-4) for ‘hot.html. Pygmy in turn relays it to the
Flashback-Peer (Step-5). The Flashback-peer then contacts
the Flashback-seeder (Step-6) to get the meta-data for the
file. Once it gets the meta-data it begins trading with other
Flashback-peers (it gets ‘initiated’ into the Flashback overlay
initially by the seeder) to download the file. Once the file is
downloaded, it immediately stops trading and hands over the
file (all files are stored in RAM) to pygmy (Step-8) which
in turn marshalls it as a HTTP-response back to the browser

2http://pygmy-httpd.sourceforge.net/

Fig. 1. Flashback: High level design showing the flow of data

(Step-9). The browser then displays the web-page in the larger
frame.

If any of the links in ‘hot.html’ are relative links, they are
all fetched through the local web-server (and in turn by the
Flashback-Peer). This is because the browser thinks that the
local host is the source for the web-page. An external link,
however, is fetched by the browser as usual. Thus, if a site
maintains links to advertising images, these are not served by
flashback but directly from the third-party site. The owner of a
site, therefore has full control on which web-pages3 (and even
which parts of the web-pages) are to be served via Flashback.
The flashback-seeder is started at the root of the web-page
hierarchy. When peers contact the seeder for a file, it only had
to do a relative lookup for a file on the local machine. Thus, on
the web-server side, no changes are required, except starting
the flashback seeder and serving the modified split web-page.
Further, the split web-page can be served only in case of a
large load. Thus, during normal load, the original web-page
is served as usual but as soon as high load is detected, the
split web-page is served. On the end-user side, the user either
gets the normal hot.html file or an applet that initializes itself
and automatically downloads and displays the web-page, thus
requiring nothing different for the user to do. The only extra
step is that the applet requires permission to send and receive
data from other peers. If the applet is signed by a certificate,
this shows up as a pop-up dialog box. Once the user ‘accepts’
(clicking yes) the applet, the web-page automatically displays.
Thus no download or configuring or extra typing is required
from the users part. This design therefore satisfies all of the
original design goals for Flashback.

Why serve two frames instead of one simple blank web-
page? This is because of the subtlety in how applets are
handled in a browser. If there is only one frame and the applet
asks the browser to load the web-page there, the browser
redirects to the local pygmy server, the applet is stopped
because the browser has moved on to a new page – in effect
stopping both the Flashback-peer and the pygmy server, and
thus nothing will be displayed to the user. The two-frame
design is what we term as the ‘Transported Frame Hack”

3We use the term web-page to mean a set of file-objects that are needed to
display the web-page correctly, for example the embedded images, CSS files,
javascript files, etc.

4

(Similar in spirit to the Transported-Man magic trick where
the magician uses his twin brother to fake the illusion one
person doing impossible tricks.)

B. Automatic NAT Traversal with Distributed Hole Punching

In designing Flashback, we wanted the use of the system
to be seamless and also be accessible to a wide population.
Thus, one of the high level requirements for Flashback is
that the system should be able to run even without end-
user intervention. Thus, peers must ideally be able to form
connections with each other automatically, even if some them
are behind NAT devices (NATs for short). NATs, in brief,
multiplex many end-user nodes into one public IP(v4) address.
This is useful for home users that have many computers but
only one IP address or ISPs that are short on IP addresses.
The main problem with NATs is that, by default, they do not
allow new incoming connections. For a node behind a NAT to
accept new incoming connections, the NAT must be explicitly
configured to allow incoming packets on certain ports (opening
ports on a a NAT). This issue is one of the major stumbling
blocks for a P2P protocol. Most P2P systems require the end-
user to be able to access their NAT-devices and change the
settings to open ports.

Automatic NAT traversal is possible using a technique
called “Hole Punching” [12]. Hole punching requires a well-
known server that is not behind a NAT. Hole punching
has certain subtleties, especially in the case of TCP and
these are discussed in detail in [12]. UDP hole punching is
relatively more straightforward and robust. We experimented
with TCP hole punching as well but quickly realized that it
was unreliable – especially when the NAT devices maintained
TCP connection state. As [12] reported, UDP hole punching
worked across 82% of NAT devices compared to 64% in TCP.
Given these factors, we decided to design Roulette to work
over UDP. A concern with hole-punching though, is the impact
it would have on the seeder. If each Flashback-peer involved
the seeder each time it wanted to do a hole punch, the overhead
on the seeder may be too high. We tackle this using distributed
hole punching.

For hole punching to work correctly, a “middle” server must
know both endpoints of the two nodes that want to establish a
full duplex connection to each other. When a Flashback-peer
first contacts the seeder, it sends the IP and port that it sees. If
the peer is behind a NAT, this is the IP and port that the NAT
has assigned. The seeder replies back with the IP and port that
it is seeing. This will be the IP and port of the NAT device.
Taken together, these constitute the “identity” of the peer. Both
the seeder and the peer now have this identity information.
Once a peer discovers its own identity, it begins to search
for other neighbors. It starts be asking the seeder to refer it
to another peer. The seeder then acts as the intermediary in
the hole punching process. It sends the new peer’s identity to
one its random neighbors. It also sends the neighbor’s identity
to the new peer. The two peers then attempt hole punching.
Note that each peer has the other’s both endpoints. If the hole
punch succeeds, packets start flowing in both directions and a
full duplexconnection now exists between the two peers. This

process is repeated and the peer now obtains two neighbors.
Now, this peer knows both endpoints of its two neighbors and
can act as the intermediary in a hole punch process between
them. The server is not needed in this hole punch. In effect,
peers start acting as intermediaries for their neighbors’ hole
punch process, i.e., a distributed hole punching process. The
beauty of this is that the seeder is now in no way special as
far as getting more neighbors are concerned and just another
neighbor peer.

III. ROULETTE: HANDLING EXTREME CHURN

The primary requirement of Roulette is that it can operate
under extreme churn. We term extreme churn as a 50% or more
change in the P2P overlay in under 10 seconds. In this highly
dynamic setting, normal P2P content distribution approaches
either fail or degrade significantly. We use the case study of
BitTorrent to explain why. We describe our approach to tackle
extreme churn and the two specific requirements that arise
out of that approach. How these are tackled in Roulette are
described last.

1) The Problem of Fast Download Under Extreme Churn:
The nature of P2P web-page distribution requires that a
Flashback-peer be able to download the requested web-page
as fast as possible and in an extreme churn environment.
Ironically, the faster, peers are able to download the web-
page, the more churn they create (if it is assumed that they
are selfish and leave immediately after the download). The
average end-user patience for a web-page to load is around 10
seconds [26] and thus we would expect churn in the same time
range, i.e., the overlay network can completely change in under
10 seconds. In this time frame, peers must be able to trade
and download a web-page. Previous research has addressed
P2P data exchange in high churn environments where peers
have a life-time of couple of minutes [20] but Roulette faces
an order of magnitude different churn rate leading us to term
it as extreme churn. Further, unlike other P2P system, we
assume the worst – i.e. peers can leave as soon as they have all
the data. Thus there are no long term peers to take advantage
of ([29], [7], [9]). Fast download under extreme churn is
therefore the primary design goal and research challenge for
Roulette.

Assuming users will be selfish and leave immediately is not
unrealistic and in fact might be the right thing to do. In P2P
file sharing systems (such as Gnutella [2]), most users tend
to act selfishly. In the context of web-content, a minute or
two of altruism would probably not hurt the user. However,
we feel that if the user is given strong guarantees that he/she
will only upload as much as they download, they would be
more accepting of such a system. Further, for certain ISPs
where users are charged according to bytes transferred, this
requirement becomes especially critical.

Why should extreme churn be a problem? To answer this
question we first study BitTorrent, a popular P2P Tit-For-
Tat, content dissemination protocol that works very well in
practice. BitTorrent is primarily designed for dissemination of
large content and where peers stay in the system typically for
hours. We then examine why simple modifications or tuning

5

to BitTorrent are not sufficient for it to be applicable for small
file dissemination under extreme churn. We then present a
key insight that is the driving factor behind most of Roulette’s
design.

A Brief Primer on BitTorrent: In BitTorrent (BT), the
content distributor first creates a ‘torrent’ file (MetaData about
the file) which has to be downloaded first by each BT peer.
The torrent file contains information how many ‘pieces’ a file
has been chunked into and a SHA hash for each piece. The
piece size is decided initially by the content distributor and is
usually in the range of 128KB-1MB. When a peer downloads
a piece, it verifies the downloaded piece against the hash and
finally when the whole file is downloaded, verifies that as well.
A seeder peer is also created that has the whole contents.
Additionally, there is also a ‘tracker’ that co-ordinates the
whole download process. Peers contact the tracker to obtain
the list of other peers who are currently downloading the
file and establish connections to them. When a peer first
contacts another peer, they exchange a bit-vector indicating
the pieces they already have. This allows each peer to figure
out what missing pieces the other peer can provide them.
After that, a peer updates each of its neighbors with the piece-
id of every piece that it successfully downloads and verifies.
This allows each peer to maintain a ‘stream’ of requests for
pieces to ask from neighbors. Peers therefore maintain piece
‘state’ about their neighbors. It is worth nothing that a peer,
at a certain time, is only trading with 4-5 of its neighbors
even though it pre-opens TCP connections to as many as 20
other peers. Using a technique called ‘optimistic unchoking’
a peer slowly moves towards trading with those peers that
give it the maximum utilization of its bandwidth. Peers also
regularly inform the tracker of their progress and the tracker
also continually checks if a peer is still in the system or has
left.

Drawback of BitTorrent under Extreme Churn:
BitTorrent is designed to scalably distribute large content
(hundreds of MBs) where peers stay in the system for hours.
The design choices and default paramater values of BT reflect
this. However, a deeper problem with trying to use BitTorrent
to trade small files in an extreme churn environment is its
philosophy of doing business –choose a few but ‘rich’
neighbors(choosing the 4 peers out of 50 to do data exchange
with). A BT peer implements this philosophy using ‘optimistic
unchoking’ to find richer and richer peers (peers with more
bandwidth). This however, will be ineffective under extreme
churn. First, it may be extremely hard to get an accurate
estimate of the bandwidth in the short time frame. Thus it
will be hard to discern how rich a peer really is. Second, the
extreme churn rate implies that the chosen few neighbors may
leave quickly reducing a peers throughput until it finds other
peers to ramp up its bandwidth. By the time it finds other
trading neighbors, some of the current neighbors may leave.
Thus a peer may never be able to utilize its bandwidth fully,
resulting in a slow download.

Our Approach to Tackle Extreme Churn: We make
the observation that the key to handling extreme churn might
infact be to use the opposite philosophy of BitTorrent, i.e.,
choose many but ‘compatible’ neighbors. When neighbors

are disappearing fast, it helps to have a large set of them with
whom data can be exchanged. Second, due to the large number
of neighbors it will not matter what bandwidth one particular
neighbor is providing; the large quantity of them will result in
overall effective bandwidth utilization. However, the neighbors
should be such that data can be traded with them, i.e., they
are compatible.

This solution however, is not efficient in BitTorrent. First, in
BT a peer updates all its neighbors on each chunk download.
This overhead becomes large when there are a large set of
neighbors. Second, since neighbors are arriving so frequently,
a handshake of the chunks possessed must be done frequently
adding further to the overhead of the protocol. Third, there
is anecdotal evidence that TCP congestion control starts to
behave erratically when data transfer happens simultaneously
over a large number of connections resulting in poor through-
put.

In Roulette, we use a two-pronged approach to handle
extreme churn. First, we implement a stochastic neighbor
recommendation policy that is tied to data transfer. This allows
peers to recommend compatible neighbors for other peers.
Second, we reduce the overhead of meta-data exchange by
eliminating the need for a peer to send updates to its neighbors
on each chunk download. We describe these in more detail
now.

A. Finding Many Compatible Peers

How peers find, keep and delete neighbors has a large
impact on the type of the overlay formed and consequently
on the data exchange between peers. In Roulette, we have
designed a new overlay construction protocol that is explicitly
tied to data transfer so that peers can find compatible peers
fast. In a sense, we have merged a decentralized heart-beat
protocol into the data exchange process and use it for overlay
construction.

Further, the seeder does not explicitly try to construct or
maintain any particular type of overlay resulting in a fully
decentralized overlay construction and maintenance.

Keeping up With Lost Neighbors: Due to extreme
churn, neighbors disappear quickly and thus it is important to
keep a good fill of neighbors. Each peer is initialized with
two important parameters,MinDegree and MaxDegree
(default of 4 and 32 respectively). When a peer has less than
MinDegree neighbors, it continually seeks new neighbors by
trying to add a new neighbor every 100ms. Once, it has the
minimum required number of neighbors, it still continues to
acquire more neighbors (to compensate for leaving neighbors),
but the neighbor-seeking rate slows according to its degree. If a
peer has more thanMaxDegree neighbors, it stops acquiring
neighbors. New neighbors are sought by randomly choosing
an existing neighbor and asking it for a ‘recommendation’.

Referring Neighbors Using the Roulette Cache:The
key intuition behind this is that a peer keeps a ‘revolving
cache’ of the most recent neighbors with whom it has ex-
changed data. When it has to recommend a neighbor to
another peer, it chooses stochastically from this revolving-
cache (hence also the name Roulette). A separate cache is kept

6

for each file is that is traded. When a peer wants to find new
neighbors it asks its current neighbors for recommendations.
The recommended peers are one that are most likely to be
still active and also possess some data for the file(s) that the
requesting-peer is interested in. Since peers are leaving fast,
it is essential that a peer find compatible peers that are also
active.

Whenever a peer sends or receives data (chunks) from its
neighbors, it adds them to theRoulette-Cache (RC). The RC
is a variable sized cache with the number of slots varying by
the peer’s current degree (curDegree). A neighbor is added
to the end of the cache (higher slot number). The cache is
then trimmed back, if necessary, tocurDegree slots. The
neighbors trimmed are at the front of the cache (lower slot
numbers). To recommend a neighbor, a peer probabilistically
selects a neighbor from the RC. The probability of selecting
a neighbor from the cache isslotNumber/

∑s
k=1 k, where

s is size of the cache. Thus, the probability of choosing is
directly proportional to the slot number, i.e., the neighbors
most likely picked from this cache is one with whom the peer
has most recently sent or received data from. Secondly, the
more number of times a node has traded data from a neighbor,
the more likely its recommendation since a neighbor can be
present multiple times in the RC.

Detecting and Repairing Overlay Partitions: Occa-
sionally, a group of peers can become partitioned from the
main overlay due to high churn. Then, after some time,
everyone has all the chunks in the group and there are no more
‘compatible’ peers. Thus, peers must watch out for partitions
actively and find compatible peers again. We use a simple and
completely local technique to guard against partitions. A peer
continually tracks how much new file-data it receives every
500 ms. If it does not receive any new data, it suspects it may
have become partitioned. It then asks the seeder for a new
neighbor, since the neighbors of the seeder are, by definition,
not partitioned. Once the peer is connected to a neighbor of
the seeder, it is back in the main overlay.

B. Low Overhead Data Exchange in Extreme Churn

Keeping overhead low is an important requirement in order
to maximize the ‘useful’ file-data that a peer transfers. In
most P2P system, peers exchange meta-data about what parts
of the file they have. This allows each peer to know what
actual file data to ask or give to another peer. The meta-data
is usually the chunk-ids of the chunks a peer has downloaded,
encoded in some fashion. In Bit-torrent, two peers initially
exchange a bit-vector where the bit number corresponding to
the downloaded chunks are set. After this, a peer explicitly
updates each neighbor with the chunk-id of each new chunk
that it downloads. When the files being traded are small, the
chunks have to be also small to allow for parallelism in the
system. Web-objects can range from sizes as small as couple of
KBs (simple HTML page text) to tens of KBs (CSS, javascript)
to hundreds of KBs (images) to tens of megabytes (music and
video files). For small file sizes, say tens of KBs, data chunks
may need to be as small as 512bytes. Updating a large number
of neighbors on each of these small chunk download can easily
become a significant fraction of actual data downloaded.

In Roulette, we eliminate these updates to neighbors. Instead
peers do a an explicit handshake each time they need meta-
data information from their neighbors. In an extreme churn
environment, this scheme (no update, explicit handshake)
may be quite appropriate because a peer may be doing a
lot of handshakes anyways due to the extreme churn rate.
Handshakes are costlier than updates and thus must be made
efficient. Roulette uses an interval-based approach to tackle
this. In a handshake, a peer sends the top intervals of data
that it has. An interval-based representation allows for a
compact representation of chunk information and thus a lower-
overhead data exchange protocol. For example, consider Fig-
3 where a peer has downloaded certain portions of a file. If
intervals are used, the peer can encode the full information of
what chunks it currently has. The number ofnon overlapping
intervalsof data a peer has downloaded dictates the amount of
handshake data it must transmit. The handshake information
can potentially reduce as a peer ‘fills in the gaps’ and, initially,
when a peer has a small amount of data, it also has very
few intervals. The main advantage of non-overlapping interval
representation is that the handshake overhead is not constant
(unlike a bit-vector representation) with every handshake but
is significantly reduced in the initial and final stages of data
download4. To aid in meta-data exchange of intervals, we
developed an extension to SkipLists [23] that can maintain and
search for non-overlapping intervals inO(Logn(N)) time. We
describe this lightweight and easy to implement data structure
next.

NOIS: NOIS stands for Non-Overlapping Interval
Skiplist. We use NOIS to store the intervals of chunks (not
bytes) that have been downloaded for a file. Since the Roulette
data exchange protocol uses intervals extensively, it is impor-
tant to have a data structure that supports addition, deletion and
search for intervals efficiently. A skiplist [23] is a probabilistic
data-structure that approximates the functionality of a balanced
tree (providingO(Log(N)) search, insert and delete) w.h.p.

Skiplists are most used to store single point values. How-
ever, for Roulette, we need to store and manipulate intervals.
Generalized intervals-skiplits [14] have been proposed for
stabbing queries that function similar to an augmented interval
red-black tree but fully-general interval skiplists are an overkill
for our application. We know that the intervals we need to
maintain are non-overlapping (if duplicate data chunks are
received, they are discarded) and hence a simpler data structure
can be built. In NOIS, each skip-node is similar to a node in a
normal skiplist, except that, a range is maintained in each node
(Fig-3. Further, the operations (search, insert, delete) in NOIS
are all range based. The search operation is similar to normal
skiplist search (with checks of overlapping or containment).
The case of interval deletion and insertion are more special
since an insertion may lead to merging of intervals and deleting
a small portion of a large range leads to creation of more
intervals. NOIS has been released as open-source software5.

4Various other alternatives to design an efficient handshake method are
possible. For example, sending a fixed-length bit-vector using Bloom Filters.
We are currently exploring this and other alternatives

5A Java implementation is available at
http://www.ics.uci.edu/ mayur/software/nois.jar

7

Fig. 2. FileMetaData (FMD) Data-structure

Fig. 3. Data Management Layer Cake

IV. ROULETTE PROTOCOL

In this section we describe in detail how Roulette actually
does data transfer. Since we use UDP as the transport protocol,
much of TCP’s functionality has to be emulated. However,
we have designed Roulette to maximally utilize UDP without
being unfriendly to other TCP traffic. We describe these
issues after explaining the data transfer protocol. Finally, we
explain the role and functionalities provided by the Content
Management Subsystem (CMS).

After the flashback peer starts in the browser, it joins the
P2P network and waits for file request from the local web
server (pygmy). The CMS is initialized for a particular file
when the flashback peer receives a request for a file from
the pygmy local webserver. The peer then asks the flashback
seeder for theFileMetaData(FMD for short) associated with
this file. The structure of the FMD is shown in Fig2. The
seeder replies back with the FMD. The FMD consists of two
important pieces of information: (a) The File-ID which is a
unique id that is seeder generated. This File-ID is used by
peers to refer to the file with each other, since the actual
filename may be quite long and impose unnecessary overhead.
The FMD also contains an SHA hash of all the file’s contents
so that when a peer downloads all content of the file, it can
verify the integrity of the file.

The FMD is made up of a list of MetaChunks. A
MetaChunk represents a set of chunks (by default 16) and
contains the SHA hash of the contents of the chunks that it rep-

resents. When a peer downloads all chunks of a MetaChunk,
it can immediately check if the MetaChunk is valid, If not, it
discards all data for the particular MetaChunk. A MetaChunk
is an umbrella for faster validation of downloaded content;
it has no influence on what or how many chunks one peer
will transmit to another. After the FMD is successfully by
the peer, various data structures which together constitute the
representation for the file are initialized (shown in Fig-3.

A. The Data Exchange Process

At a high level, Roulette data exchange can be broken
down into two parts, the receiver side and the sender side.
An algorithmic description of both sides are shown in Fig 4
and Fig 5 respectively6. For each neighbor that a peer has, it
continually tries to download data from them. It also has to
upload data to them, else the neighbor may cut off download to
it (Tit-For-Tat policy). Once the file representation is initialized
with the FileMetaData, the peer is ready to start exchanging
data for it. We describe the receive side first followed by the
sending side.

1) Receive Side: On the receive side of the protocol, a
peer is continually trying to download data for files. The first
step is to figure out a file for which the remote neighbor has
data. This is theINIT phase (lines 4-7 in Fig-4). If the remote
neighbor has no data for any file that the peer is interested in,
the neighbor connection is terminated.

Once a file is found for which the neighbor is willing to
provide data, the peer enters into theFIRST HANDSHAKE
(FH) mode. Here, the peer sends the top-intervals of data that
it has for the file to the remote neighbor. For example, if the
peer were trying to download data for the file in Fig-3, and
it is allowed to send only 2 intervals, it would send{[0,8],
[36,42]}. Since we use UDP, the set of intervals have to fit
into one message and thus the restriction on the number of
intervals a peer can send. In Roulette, the default maximum
number of intervals in a message is 8. The remote neighbor
uses these intervals to figure out what intervals of data that it
can provide which the peer is missing (line 9 in Fig-4). If the
remote neighbor says it cannot provide any missing data, the
file is removed from the consideration set and the per goes
back to try and find another file (lines 10-12 in Fig-4).

If the remote neighbor, however, says that it has data in
certain intervals that the peer needs (for e.g., let us assume
that it sent back intervals{[12,16], [28,30]}), then the peer
transitions into theSECOND HANDSHAKE (SH) mode. In
the state, the peer sends requests to the neighbor for specific
chunks from the intervals of data that the neighbor can provide.
The chunks to get are selected at random (line 14, 17 in Fig-
4). To continue the example, let’s say the peer asks for chunks
{16, 29} (How many chunks a peer asks for is controlled by
theBurst Size– an important parameter in congestion control).

After sending this second handshake out, the peer waits
to get the chunks from the neighbor, i.e., it moves into the
WAIT FOR DATA (WFD) mode (lines 19-23 in Fig-4) where

6While the figure shows the use of Goto statements, we have not actually
implemented Roulette that way. We use theState Design Patternto implement
the transition among the various states in the receive process.

8

it waits for data chunks to arrive and then handles them.
Handling a chunk involves updating data structures in the
content management subsystem and also updating the Roulette
Cache. If the peer gets only some (or none) of the chunks, it
timesout and goes back to second handshake mode again (how
long to wait for timeout is a function or RTT and bandwidth
estimate). If it gets all requested chunks, it immediately goes
back to second handshake. This time around it has a fewer
range of chunks to choose from ({[12,15], [30]})). This cycle
from second handshake to wait for data continues until the
peer gets all the chunks in intervals that the neighbor originally
promised. Once this is exhausted, the peer goes back to first
handshake to try and get more intervals from the remote
neighbor (line 16 in Fig-4). The process is continued until
the peer gets all the data for the file or the remote neighbor
can no longer provide any data. In the latter case, a different
file is then chosen or if no such file is available, the remote
neighbor connection is severed.

Since the whole protocol runs over UDP, there is no
reliable delivery. Thus, with every request message that needs
a reply (First Handshake and Second Handshake), a timeout is
associated. If the timeout expires, the message is resent. This
happens a fixed number of times (default is 4). If there is still
no reply, the remote neighbor is assumed dead and removed
from the neighbor set.

2) Send Side: A peer also has to reply to handshake
requests from its neighbors and send them data chunks. The
reply side is much simpler as compared to the request side.

Upon getting a first handshake request from a neighbor, a
peer checks theTit-For-Tat (TFT) policy first. If more data
has been transferred to the neighbor than has been received, the
peer silently drops the first handshake request. The TFT policy
in Roulette is strict. A remote neighbor is only allowed to ‘run
up a tab’ of 4K in data or 90% of received data, whichever is
higher. Note that that the TFT policy is not restricted to a file
but all data transfers for all files for that particular neighbor.
Dropping the request when TFT fails, rather than sending
a denial message back to the neighbor is an explicit design
mechanism. When the request is dropped, the remote neighbor
will be forced to send rerequests. This is ‘grace period’ during
which the remote neighbor must make up to this peer. Else, as
per the request side protocol, the remote neighbor thinks this
peer is dead and removes this peer from its neighbor list. The
peer however does not remove the neighbor from its neighbor
list. The peer is present in the neighbor cache until it is garbage
collected much later by the overlay management layer. During
that time, if the neighbor connects back again, the peer will
still not respond to any requests. This combination of policies
ensures that peers have no incentive to cheat or ‘leech’ off
other peers.

If the remote neighbor passes the TFT test, then the peer
must respond appropriately. This involves figuring out if it can
supply any missing data intervals for the file. First, the peer
checks if it has the file. If not, it responds with aNO FILE
reply. The remote neighbors will then try with another file. If
the file exists, then with of the content management subsystem
(CMS), a list of intervals that this peer can provide and which
are not present at the remote neighbor are created. This list of

1) WHILE all data for all pending files are not received
2) FOR EACH neighborX DO
3) INIT:
4) IF X.File is NULL
5) Initialize X.File to a mutually interesting file
6) IF no such file exists
7) RemoveX from Neighbor-List;
8) FIRST HANDSHAKE:
9) Initialize {X.File.Intervals} to missing data intervals
10) IF X{.F ile.Intervals} is ∅
11) RemoveFILE from mutually interesting set
12) SetX.File to NULL; GOTO: INIT
13) SECOND HANDSHAKE:
14) Select{Chunk IDs} from X.FileIntervals
15) IF {Chunk IDs} is ∅
16) GOTO: FIRST HANDSHAKE
17) Ask X for {Chunk IDs} data chunks
18) WAIT FOR DATA:
19) As data chunks are received
20) Update data intervals forFile
21) Add X to Roulette-Cache
22) IF All chunks have been received or TIMEOUT
23) GOTO: SECOND HANDSHAKE

Fig. 4. Roulette Data Exchange Protocol:Receiver Side

1) WHEN message fromY arrives
2) IF Y has violated Tit-For-Tat
3) DO NOT send any reply toY ; return;
4) IF message is asking to supply missing data intervals
5) SEND intervals we have that Y is missing
6) IF message is asking for data in chunk-ids
7) SEND data and update Tit-For-Tat
8) Add Y to Roulette-Cache

Fig. 5. Roulette Data Exchange Protocol: Sender Side

intervals are sent back as aFIRST HANDSHAKE REPLY .
In reply to a second handshake request, again, a check for

Tit-For-Tat is first carried out. If this passes, the peer sends
the chunks for the chunk-ids that are requested (checking, of
course, that the peer has the data for those chunk-ids and the
burst of the data that the peer has asked for is not violating
the TFT policy).

3) Remote Neighbor RTT and BW Estimation: Estimat-
ing a packet’s Round Trip Time (RTT) and the bandwidth to
a remote neighbor is important to take timely decisions. For
example, if the RTT is known, then a node can decide whether
it should retransmit a request when no reply is received within
a particular amount of time. Since we use UDP as the transport
protocol, packet loss detection and reliable transmission must
be handled explicitly at the application layer. Most operations
at the application layer are of ‘Request-Reply’ nature, for
example, random neighbor, first-handshake and second hand-
shake operations. When a remote neighbor is sent one of these
messages, it is expected to reply back with an appropriate reply
message. If it does not reply within a certain amount of time,
we resend the request. The default RTT estimate between two
peers is initially set to 100 msec. Every request message is
tagged with a sequence number. The reply to the request mes-
sage contains the sequence number enabling a node to estimate
the RTT for the particular request (which is “smoothed” with
each successful RTT estimate). For data chunks however, this
estimate is revised to take into account the bandwidth intensive

9

nature of the data chunks. Initially, the bandwidth between
two peers is set to zero. The bandwidth value is only updated
when multiple data chunks are received in sequence. The inter-
arrival time between the data chunks is used to calculate the
bandwidth asChunkSize/InterArrivalT ime. Bandwidth
estimate is also updated smoothly. Using this bandwidth
estimate, a node expecting multiple chunks calculates the
timeout for the arrival of the next chunk as2∗CurrentRTT +
Bandiwdth/ChunkSize. The factor of 2 forCurrentRTT
is to make the timeout conservative to account for sporadic
congestion in the network and delays within Roulette’s read
and write queues.

4) Flow and Congestion Control: The application layer
also has to provide for flow and congestion control. Flow
control and congestion control are implemented in a single
elegant stop-and-goscheme in Roulette. After the second
handshake, a peer waits to receive all chunks. Only after it has
received all chunks, does it send out a second handshake again
(to get more chunks). This results in automatic flow control.
Secondly, the receiver-peer controls the burst of chunks that
the sender may send. Initially the burst-size is set to a default
of 16. This is increased by 1 for every successful reception
of the whole burst. Thus, data transfer between peers ramps
up linearly. If a whole burst is not received, the burst size
is set to the number of chunks received in the current burst.
Thus, Roulette does not follow any mathematical function in
reducing the burst but rather bases it on the actual number of
data chunks that actually made it all the way from the sender
to the receiver. This is possible only because of the stop-and-
go nature of data transfer. Thus, when there is congestion
in the network, the peers automatically scale back the data
transfer rate and then greedily try to scale it back up slowly.
This scheme of linear increase and stop-and-go means that
the maximum available bandwidth between two nodes is not
exploited fully at first. However, the large number of neighbors
a peer has compensates for this.

B. Content Management Subsystem

The content management subsystem in Roulette is highly
sophisticated with multiple representations for file-data (as
shown in Fig-3. The core of this system is theHave Intervals
that are stored in a Non-Overlapping Interval Skiplist (NOIS).
Apart from the Have Skiplist (HSL), the CMS also maintains
three other data structures. A sorted list (by decreasing size)
of the chunks intervals is maintained. This list is updated
whenever the HSL is changed. Two bit-vectors, one each for
the meta-chunks and the chunks are maintained. A set bit
in the chunks bit vector indicates that the chunks has been
downloaded. A set bit in the meta-chunks bit vector indicates
that the meta-chunk has been verified.

Functionalities of the CMS: Here we consider the
main functionalities that the content management subsystem is
required to provide and the asymptotic cost of each operation.
For example, consider a file (of size 25,600 bytes) that is
currently being downloaded by a peer as illustrated in Fig-
3. This file has four MetaChunks and 64 chunks of 400 bytes
each. The data that has been downloaded so far is shown in

shaded-grey. When a remote neighbor sends a first handshake
message to ask for intervals of data a local peer can provide,
the local peer first makes a ‘clone’ of the localHave-Skip-List
(HSL). The remote intervals are then deleted from this cloned
HSL. The intervals that are left over are the intervals of the
data that the local peer has but which the remote peer does not
have. The top intervals in this cloned and deleted skiplist are
then sent to the remote neighbor. Each deletion is aO(Log(N)
operation, whereN is the total number of intervals in the skip-
list. The remote peer is only allowed to send a certain fixed
number of intervals, so this whole operation is O(Log(N)). The
cloning operation can also be implemented efficiently with a
memory copy.

When a remote neighbor sends a second handshake message
to ask data for particular chunk-ids, the local peer makes a
direct lookup into the chunk bit-vector. If the bit is set (chunk
downloaded), it sends the data to the remote peer. This is a
O(1) operation.

When a new data chunk is received from a remote neighbor
in the receive side of the data exchange protocol, various
changes to the data structures are required. The chunk bit-
vector is first checked for duplicate chunk. If it is duplicate,
the chunk is discarded and no further changes are made. Else,
the chunk bit-vector corresponding to the Chunk-ID of the
chunk is set to 1. A check is then made to see if this chunk
completes any meta-chunk. If so, the data corresponding to all
chunks in the meta-chunk is checked for data integrity with
the SHA-hash that was originally provided by the seeder. If
the check passes, the bit in the meta-chunk is set to 1. Else, the
bits of all chunks belonging to meta-chunk are reset to 0 and
the data for the chunks is discarded and the HSL is updated.
If the chunk does not complete a meta-chunk, the data for the
chunk is conditionally added to the Have-Skip-List. All bit-
vector operations finish inO(1) time as does a hash-check.
In case of hash-check fail one interval (corresponding to 16
ids) has to be deleted and in case of adding a data chunk,
one interval has to be added to HSL. Both areO(Log(N))
operations. In case the HSL is updated, the sorted interval
data structure also has to be updated. This requires adding
one new interval, removing two intervals (due to removal of
bad chunks) or updating one interval. With a binary search on
the list, this can also be done inO(N) time, since the list is
sorted to begin with (and stays sorted even after the operation).

V. PERFORMANCEMEASUREMENT

In this section, we quantitatively analyze the performance
and scalability of Flashback, in particular the Roulette proto-
col. Preserving end-user browsing experience is the primary
goal of Flashback and a key parameter is the latency to
download a web-page, even when the web-server is under high
load. Thus our experiments are specifically designed keeping
this in mind. We perform two major sets of experiments to
test whether Roulette can consistently provide low latency for
downloads. First, we perform basic scalability tests under ‘one-
shot’ flash loads. Second, we generate consistently high loads
on the web-server and test whether Roulette can perform well
under high churn.

10

A. Experiments Framework

To measure the performance of Roulette and be confident
that the results would be a good indication of what one could
expect in a real deployment, we setup an Internet emulation
testbed using Modelnet [4] – a real-time network traffic shaper
and provides an ideal base to test various systems without
modifying them. Further, Modelnet allows for customized
setup of various network topologies7. Next, we describe our
experimental testbed and the network topologies that we used.

1) Testbed: The testbed consists of a FreeBSD machine
as an emulator and 13 clustered Debian Linux hosts. The
emulator supports a Gigabit ethernet interfaces while the Linux
hosts have 100Mbps ethernet interfaces. All machines are
connected by a dedicated Gigabit router. The emulator is a dual
processor 2.6Ghz machine with 2GB of RAM while the hosts
are dual processor machines running at 900Mhz with 500MB
of RAM. The emulator machine runs a custom FreeBSD
Kernel configured with a system clock running at 1000Hz (as
required by Modelnet). The hosts run Linux with a customized
2.6 version kernel8. The hosts support Java version 1.5 and
Python version 2.3.5. All hosts are synchronized to within two
milliseconds through NTP (Network Time Protocol).

To model the vagaries of the underlying Internet, we used
the Inet [3] topology generator tool to generate Internet router
topologies of 5000 routers. Inet generates topologies on a
XY plane which Modelnet then uses to emulate inter-router
(and hence inter-node) latencies. On this router backbone,
50 subnets are created and each subnet is allocated 5 hosts
for a total of 250 emulated hosts. Bandwidth constraints and
network packet loss rates are specified separately in Modelnet.
Primarily, we used two main network topologies: (1) a network
where all end nodes have bandwidth of 400Kbps and (2)
another where all nodes have bandwidth of 800Kbps. For
all network topologies, the latency between nodes is always
heterogenous, as dictated by the router backbone generated by
Inet. We randomly picked 1000 node-to-node endpoints (out
of 250*250 possible node-to-node combinations) and plotted
the latencies between them. This approximates the latencies
peers will experience when communicating with each other.
The latency-graph is shown in Fig-6.

Our choice of bandwidths for nodes requires some expla-
nation since the testbed imposes certain restrictions. First, the
maximum bandwidth generated in the testbed cannot exceed 1
Gbps (bottleneck of emulator NIC card and router). Second, to
keep the emulator from being overloaded, we did not want to
generate data at such a rate that the emulator CPU usage went
above 10%. Third, while Modelnet provides for running many
virtual nodes in one physical host, we did not want to create
so many processes that the swap space was being used. Under
these constraints, we would still like to simulate reasonable
bandwidth assumptions. In our use-case we assume many end-
users will have broadband. 400Kbps and 800Kbps are close

7Another testbed choice we considered was PlanetLab (http://www.planet-
lab.org/) but most nodes there have high bandwidth. Secondly, designing
custom overlays with different end-user bandwidths would have been very
difficult.

8This version supports NPTL (New Posix Threading Library), to efficiently
support multiple threads.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

N
um

be
r

of
 N

od
es

Latency between Nodes

Fig. 6. Distribution of latency among nodes in the Modelnet Internet emulator
testbed

enough approximations of DSL connections available today.
Users may also be behind higher bandwidth connections (such
as cable-modem that can provide data rates in the Mbps range)
but the primary objective is to study the scalability patterns
and not exhaustively test all possible bandwidth scenarios. We
feel our choice of bandwidths for end-users is a reasonable
approximation that can provide good insights into the real-
world behavior of the tested protocols.

2) Comparison Systems:To the best of our knowledge,
Flashback is the first incentive-based system that provides
cache-less flash dissemination capability. Thus, the exper-
iments are primarily geared towards testing it. BitTorrent,
however, can be a potential replacement protocol for Roulette
(since BitTorrent also provides for chunks based dissemination
in a Tit-For-Tat manner). Thus we compare with BitTorrent.
We did not include other P2P content dissemination protocols
(such as Splitstream [8], Bullet [18] or CREW [10]) because
they are either designed for streaming content and/or do
not perform Tit-For-Tat. We tried to setup Dijjer [11] as a
comparison point for a cache-based system but faced many
problems. For a baseline comparison, we also test a normal
client-server approach using Apache and ‘wget’. We describe
the specifics of the comparison systems below.

BitTorrent: We downloaded and used the python source
code for BitTorrent (BT) version 4.0.2. Out of the box, BT
is configured for dissemination of large files and for nodes to
seed as long as possible. Thus, we made certain changes to
it. First, we changed it so that when a BT peer downloads
the required file, it immediately exists. Thus, apart from the
initial seeder, there are no extra seeders at any time. Next,
we changed the piece size. The default is 256KB. With this
default, BT performed very poorly for small files. This is easy
to understand. When the file is less than 256KB, a peer does
not trade with others at all since it waits for the single piece
to download and then immediately exits. To compare suitably
with Roulette, we changed the default piece size of BitTorrent
to be similar to Roulette, i.e., the piece size is now 512Bytes.
We also changed the source code so that we could accurately
measure the exact time a BT peer took to download a file. We
did not make any other changes, for example changing it to
enforce stricter it-For-Tat. A BT peer can therefore keep (and

11

serve) upto 50 pending requests if it needs to (as is default in
BT) and thus Tit-For-Tat can be lax.

Dijjer: Dijjer is a freely available P2P web-cache system
developed using core concepts from Freenet (reference). Dijjer
nodes form an Distributed Hash Table (reference) and web-
files are also hashed so that a node can find a file from
the ‘closest’ node using DHT routing. During the searching
process, the file is replicated along the search path. Similar
to other P2P web-cache system, Dijjer nodes are long lived
(compared to Flashback) who co-operate with each other to
cache popular content and serve it to end nodes. We tried to
set up Dijjer so that nodes would behave more selfishly, i.e.
join to receive a file and then leave as soon as they got the
file. Trying to set up Dijjer this way turned out to be quite
difficult. When there is large churn, new incoming nodes turn
out to be ‘closer’ to the file that nodes in the system; thus they
get the file straight from the web-server rather than from other
peers. Thus, a Dijjer system set up so that when nodes leave
immediately performs as bad (or good) as a normal client-
server system. Due to this, we do not use it in our comparison
test.

HTTP Client-Server: For a baseline comparison, we
set up a Apache9-2 web-server. Clients to this web-server
are emulated using the UNIX command line program wget
(version 1.9.1).

B. Basic scalability

The goal of the basic scalability experiment is to test how
the systems perform under ‘one-shot’ loads for various file
sizes and with different client bandwidths. For each system, a
server (or seeder) is started first. A certain number of clients
(BitTorrent peer, Flashback peer or wget process) are then
created concurrently and are asked to download a particular
file. When a client/peer downloads the file, it immediately
quits. The number of simultaneous clients are varied from 4 to
96. The upper limit is because that creates close to 8 peers on
each of the linux cluster machines and CPU utilization when
running Flashback nears close to 80%. Beyond this, the test
results for Flashback start to get skewed and hence the limit.
Peers are asked to download files varying in size from 4KB to
128KB. This again reflects types of files that might constitute
a web-page, for example, simple HTML files are usually a
couple of KBs, CSS and javascript files are around 20-30KBs
and images are usually between 40-150KB. All clients and the
server have a maximum (symmetric) bandwidth. We test with
two network topologies – 400Kbps and 800Kbps. As noted
before, these are approximations to DSL like connections.
The requirement that peers exit immediately is to mimic total
selfish behavior. Even in single-shot loads, this creates some
churn since all peers do not finish at once. The peers that finish
later have to deal with exiting peers.

Experiment results: The results of the basic scalability
experiment are shown in Fig-7. The Y-axis plot the time in
milliseconds and the X-axis (in logscale) shows the number of
nodes that participated in the one-shot load. We run each test 5
times and plot both average and 90% values. For each protocol

9http://www.apache.org

we tested the time for different file sizes (from 4KB upto
128KB). The performance results for normal HTTP, BitTorrent
and Flashback are shown in Fig-7(a), Fig-7(b) and Fig-7(c)
respectively. In Fig-7(d) we compare the three systems side-
by-side for one file size, 128KB. The spike in latency seen
at 96 nodes for some file sizes for BitTorrent and Flashback
is due to the CPU on the cluster machines becoming the
bottleneck running the large number of processes. Thus, we
did not experiment with a larger number of nodes than 96.

From the Figures, we can make the following observations:

• In normal webserver (HTTP-Apache) the end user latency
grows linearly as a function of both increasing load and
increasing file size. In comparison, both BitTorrent and
Flashback scale logarithmically with increasing load. A
P2P approach, therefore, offers superior scalability and
end-user latency benefits.

• Flashback handles load better than BitTorrent, both in
lower end-user latency as well as the variability. For e.g.,
in BT, the 90thile value can be almost three times the
average value while in Flashback it varies less than 30%.
Note that the Y-Axis of BitTorrent and Flashback are
different.

• When the protocols are compared side-by-side, the dif-
ference in the protocols become clear. For example, a
BitTorrent peer takes 25 seconds on average to download
a 128KB file when 64 peers are started at once. A Flash-
back peer takes less than 15 seconds. This is because,
in BitTorrent, many peers leave at the same time and the
remaining peers take time to reconnect and ramp up their
bandwidth. In contrast, Flashback peers are continually
trading with many peers and thus are less susceptible to
exiting peers.

Even with one-shot loads, the difference between the three
systems is easily perceptible. We know study the effects of
even increased churn and its effects in the next section.

C. Dynamic Stability Test for Flash Crowds

To test the performance of the various protocols as they
would perform under flash traffic we designed a novel experi-
ment called theStabilized Pooltest. There are two main goals
of the experiment: (a) To test whether a protocol isstable
under a particular load and (b) To calculate the average end-
user delay that a client may experience when the server is
under a particular load.

The main goal of this test is whether the systemself-
stabilizes. Peers are introduced at a particular rate to ‘hit’ the
server. If the system is self-stabilizing, then the number of
‘incomplete’ peers does not keep growing but stabilizes around
a certain number. Incomplete peer are those which haven’t
got the complete file yet. If the throughput of the system is
lower than the demand placed on new incoming peers, then
the pool of incomplete peers keeps growing. However, if the
system is self-stabilizing, then the throughput of the system
grows along with the hit-rate and thus the pool of incomplete
peers stabilizes. The self-stabilizing characteristic is extremely
important for the self-scaling property of a cache-less P2P
dissemination system.

12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 96 64 32 16 8 4

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Number of Nodes

4K
8K

16K
32K
64K

128K

(a) HTTP Scalability

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 96 64 32 16 8 4

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Number of Nodes

4K
16K
64K

128K

(b) BitTorrent Scalability

 0

 5000

 10000

 15000

 20000

 25000

 30000

 96 64 32 16 8 4

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Number of Nodes

4K
8K

16K
32K
64K

128K

(c) Flashback Scalability

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 96 64 32 16 8 4

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Number of Nodes

Flashback - 128K
Bittorrent - 128K

Http - 64K

(d) Three Systems Comparison

Fig. 7. Basic scalability test w.r.t. network size and file size with 800kbps bandwidth nodes. X-axis is logscale.

In the experiment, we varied the incoming input rate from
1/second to 32/second (3.6K hits/hour to 115K hits/hour). The
files that the peers requested were also varied. Every second,
we checked the number of currently running peers or the pool-
size and stored the value. Every 10 seconds, we evaluated the
maximum pool size in last 10 seconds. If this value was higher
than the maximum in the previous 10 seconds, the maximum
pool size value was updated and the test continued. Else, we
assume the pool has stabilized and stop the test. The average
total time recorded byall the peers that participated in this test
is also recorded (in some tests we averaged over 800 peers).

Experiment results: The results of the dynamic stability
experiment are shown in Fig-8. The Y-axis plot the time in
milliseconds and the X-axis (in logscale) shows the rate at
which nodes arrive continually at the webserver. For each
protocol we tested the time for three different representa-
tive file sizes (4KB (text), 64KB(small images) and 128KB
(large images)). The performance results for normal HTTP,
BitTorrent and Flashback are shown in Fig-8(a), Fig-8(b) and
Fig-8(c) respectively. In Fig-8(d) we compare Flashback and
BitTorrent side-by-side for one file size, 128KB. We tried
running the experiment for 64 nodes/sec but again the CPU
on the cluster machines became the bottleneck and skewed the
results. We thus show results only for incoming rates upto 32
nodes/sec.

From the Figures, we can make the following observations:
• We did not show all rates for HTTP because it did not

stabilize when the input rate was more than 8nodes/sec
for 64KB files or larger. We show the latency for input
rate for 64KB file as a reference to latency time for 4KB
file. The difference in latency time is dramatic and shows
why webservers can so easily start “trashing”.

• Both Flashback and BitTorrent stabilize under loads upto
32nodes/sec. For BitTorrent, however, there is a sharp
increase when the load changes from 4 nodes/sec to 8
nodes/sec but this increase is more smooth for larger
incoming rates. We are currently studying why this hap-
pens. There are no such dramatic jumps in Flashback. In
general, the end user latency grows logarithmically with
increasing load for both BitTorrent and Flashback. Again,
this shows the superior scaling of recruiting end users to
act as a distributed, self-scaling web-server.

• The difference in end-user latency between BitTorrent
and Flashback is quite significant as shown in Fig-8(c).

For low load (upto 4 nodes/sec) BitTorrent and Flashback
have almost equal latency. However, there is sharp rise
in latency time for BitTorrent after that. We conjecture
this is due to BitTorrent’s inability to handle high churn
effectively. The end-user latency for 32 nodes/sec for
BitTorrent is over 20 seconds whereas it is less than 12
seconds in Flashback. Clearly, if BitTorrent were to be
used as the data exchange protocol it would test many
users’ patience.

1) Effect of end-user bandwidths:In this experiment we
evaluate the effect of end-user latency when the end-user
machines have a lower bandwidth capacity. Intuitively, the
latency must increase since the system throughput as a whole
as reduced. We ignore HTTP’s performance since its behavior
is easily predictable. We compare BitTorrent and Flashback
and show the results in Fig-9(a), Fig-9(b), Fig-9(c).

What is interesting is the difference in the trends in the two
protocols for the 400Kbps network. The difference in latency
grows bigger with increasing load (number of nodes/sec) and
the subsequent increased churn. Flashback scales extremely
well in this case. The average end user latency grew only 4
seconds from a load 2 nodes/sec to 32 nodes/sec (an increase
in 1 second of latency for every doubling of load)whereas
in BitTorrent the latency increased by almost 15 seconds. The
absolute latency in BitTorrent at 32nodes/sec is almost too long
for a good web experience – at more than half a minute. In
comparison, the latency is just above 15 seconds in Flashback.

2) Data Overhead:Here, we compare the average total
data received by a peer in BitTorrent and Flashback when
downloading a file. The amount of data that a peer actually
receives during the download process is greater than the actual
file because of the overhead of meta-data exchange. In HTTP,
the data downloaded is the same as the file size (just a little
bigger accounting for TCP and IP header overhead). Fig-10
shows the average data received across increasing load on
server to get a 128KB file. The overhead in Flashback is almost
constant (and in fact decreases with load) but in BitTorrent
it is a steady increase. Note that the varying parameter is
the load and not the file size, so changing the chunk size
in BitTorrent will not change the trend of this graph. During
high churn, the overhead in a BitTorrent like protocol is
high due to large number of handshake messages. Flashback
has almost constant overhead in spite of increasing load
due to the novel interval-based approach to exchanging and

13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

4K
64K

(a) HTTP Scalability

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(b) BitTorrent Scalability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(c) Flashback Scalability

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

Flashback - 128K
Bittorrent - 128K

(d) BitTorrent vs. Flashback

Fig. 8. Dynamic stabilization test w.r.t. increasing incoming rates of 800kbps bandwidth nodes. X-axis is logscale. HTTP does not stabilize with more than
8nodes/sec for files over 64KB.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

64K
128K

(a) BitTorrent with 400Kbps nodes

 0

 5000

 10000

 15000

 20000

 25000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(b) Flashback with 400Kbps nodes

 10000

 15000

 20000

 25000

 30000

 35000

 32 16 8 4 2 1

M
e
a
n
 D

o
w

n
lo

a
d
 T

im
e
 (

m
s
)

Incoming-Rate (nodes/sec)

Flashback - 128K
Bittorrent - 128K

(c) BitTorrent vs. Flashback

Fig. 9. The effect of peer bandwidth nodes. HTTP is ignored from comparison. X-axis is logscale.

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 32 16 8 4 2

T
ot

al
 D

at
a

R
ec

ei
ve

d

Incoming-Rate (nodes/sec)

Flashback - 800k network
Bittorrent - 800k network

(a) Data Overhead

Fig. 10. Average data received by each peer in BitTorrent versus Flashback to download a 128KB file

maintaining meta-data. This also explains why the end-user
latency trends between Flashback and BitTorrent diverge. With
the same end-user bandwidth, Flashback is able to provide
better ‘system throughput’. Why the overhead drops at large
load is something we are investigating closely.

Summary: P2P approaches are highly scalable and are
ideal for building self-scaling web-servers. However, the pro-
tocol must be explicitly optimized for small files and extreme
churn. While BitTorrent shows good scaling trends the ab-
solute latency is far higher than what an end user might like.
Flashback, in comparison is both scalable with low end-user
latency.

VI. RELATED WORK AND FUTURE DIRECTIONS

Flashback is a cache-less approach to handle flash crowds.
This approach was proposed as psuedoserving in [17] where
clients have to agree to share content with other clients. How-
ever, there is no mechanism (such as Tit-For-Tat) to actually
enforce this and no working system with this technique. In

CoopNet [21], the authors propose and implement a cache-
less approach. However, clients get whole files from others
and clients are also assumed to be co-operative and stay in
the system for a few minutes. Flashback works scalably even
without these assumptions. The churn rate we handle is in the
order of seconds, a magnitude higher than what is assumed
in CoopNet. Further, since clients usually get whole files
in CoopNet, the authors present techniques on how to find
the closest or best peer using IP address prefix matching.
We do not employ this in Flashback because the primary
objective in Flashback is not to find a few best peers but to
get a lot of peers and download parts of file from them. In
Overhaul [22], the authors also explore a cache-less approach
and wherein the file is split into chunks and clients get parts
of the file from each other. However, their approach requires
a change to the HTTP protocol in order to achieve client-side
transparency. Even if the proposed changes are accepted, it
would take years before browsers and servers reflected this
change. Additionally, the problem of clients behind NATs

14

would still need to be addressed, probably requiring HTTP
to run over UDP (like DHTTP [24]. Overhaul clients are also
assumed to be co-operative and secondly, it is not clear how
well Overhaul would work in an extreme churn environment.
However, the experimental results presented strongly validate
the the scalability benefits of a cache-less approach. [30]
is a simulation based study that explored the benefits and
usefulness of a cache-less approach and showed the potential
bandwidth savings that may be gained. The study also high-
lighted the problem of implementing a cache-less approach
due to peers being behind NATs. We deal with this issue
explicitly in Flashback and the design of an UDP based
protocol and interval based chunk representation is a direct
ramification of this constraint.

There have also been many other Peer-to-Peer approaches
to solve the flash crowd problem but these operate with
the peers acting as caches, i.e., a cache-based approach, for
example, Coral [13], Squirrel [16], Kache [20], Backslash [27],
PROOFS [28], and Dijjer [11]. Squirrel is designed to exploit
organizational level peers while Coral and Kache are more
generic. All four approaches use a distributed hash table
(DHT) ([6]) as their fundamental data structure. In these
P2P web-cache approaches, volunteer nodes form a distributed
cache. When a end-user needs some content, it has to first
contact one of the peers in the cache. This is accomplished
either by requiring the user to rewrite the URL (as in Coral
and Dijjer) or installing a proxy (as in Squirrel). Once a peer
is contacted and the URL request made to it, the peer performs
a DHT ‘lookup’ to see if any other peer already has the web-
page. If no other peer is deemed to have the web-page, the
peer gets the web-page from the main web-site and this is then
returned to the end user. The web-page may also replicated
during this search process so that the popular a web page
becomes, the larger number of nodes it is cached in. The
P2P web-cache is usually comprised of volunteer machines
and not the end clients that are requesting a particular page.
Therefore, even though the web-cache may be large it is not
self-scaling and may still become a bottleneck. Secondly, if
the web-page is set not to be cached by the web-site the web-
cache just adds to the latency in getting the web-page. Third, in
the design of these systems, it is assumed that the volunteer
machines are relatively long lived. Kache is unique in this
respect that it explicitly tackles the issue of high churn when
volunteer machines are short lived. The lifetimes assumed in
Kache, though, are still an order of magnitude larger than that
assumed in Flashback. In Kache, the authors show that their
systems performs well even when the churn rate is 10%-25%
change to the P2P overlay in 200 seconds. When the churn
rate is increased so that 10%-25% of nodes leave in under 40s,
the system starts to ‘trash’. In comparison, 90% of the overlay
can change in under 10 seconds in Flashback and nodes are
still able to get the download the file with low latencyand in
a tit-for-tat manner. The issue of dynamicity or churn in P2P
networks has also been studied in itself [19], [7], [9], [29].

While P2P web-cache approaches to solve the flash crowd
problem are somewhat new, the design of WWW has long
supported infrastructure-based caches. These are machines that
are maintained by organizations or ISPs and they cache web-

objects that are accessed by the members of the organization.
Infrastructure caches have many benefits including low latency,
bandwidth savings to both the organization and the primary
web-server and also importantly, transparency to the end user.
These cache machines can be either standalone or participate
in a larger cache network. How to form these cache-networks,
the performance issues involved, etc. has received a large
amount of research study (we defer to the survey in [31]).
In this context, we wish to say that Flashback is not intended
as a replacement for these infrastructure caches but rather as
a supplementary mechanism that is useful when Flash crowds
appear inspite of web-caches or simply because a web-site
does not want its pages cached.

Future Work: Flash crowds can appear inspite of web-
caches due to low hit-rate, a wide and distributed set of
people who want the content or low capacity of the web-
server itself. Further, this is exacerbated with growing dynamic
and customized content. Bandwidth bottleneck is only part of
the larger problem of a web site being unable to disseminate
information to a large audience. If the web-page is generated
dynamically, the CPU can also become a bottleneck and there
is active research on ways to tackle this [15], [25], [32].

Flashback currently does not address either dynamic content
or streaming content. Since the end user browser becomes
a tiny web-server in Flashback, it is not inconceiveable that
Flashback can be used to handle dynamic data but the nature of
the problem changes dramatically since all peers are no longer
interested in the same content. Handling streaming content
may be easier, especially since peers may now stay longer
in the system thereby causing less churn. We are currently
exploring both these ideas.

VII. C ONCLUSIONS

In this paper we introduced a cache-less approach to handle
flash crowds at web-sites using a novel P2P data exchange
protocol, Roulette that works well in distributing small files
in an extreme churn environment. However, we see Flashback
not as a replacement for web-caches but as a supplementary
mechanism that is useful when Flash crowds appear inspite
of web-caches or simply because a web-site does not want
its pages cached. Though Flashback has been designed from
the ground up to maintain a seamless user experience, some
firewalls can still block P2P connections leading to explicit
user intervention. Flashback is also currently designed only to
distribute static web-pages. We are currently exploring the use
of Flashback for more dynamic data and use-cases.

REFERENCES

[1] Bittorrent: http://bitconjurer.org/bittorrent/.
[2] Gnutella: http://gnutella.wego.com.
[3] Inet: http://topology.eecs.umich.edu/inet/.
[4] Modelnet: http://issg.cs.duke.edu/modelnet.html.
[5] AKAMAI . http://www.akamai.com.
[6] BALAKRISHNAN , H. Looking up data in p2p systems. InCommunica-

tions of the ACM (CACM)(2002).
[7] BHAGWAN , R., SAVAGE , S., AND VOELKER, G. M. Understanding

availability. In International Workshop on Peer-to-Peer Systems (IPTPS)
(2003).

[8] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI , A., ROW-
STRON, A., AND SINGH, A. Splitstream: High-bandwidth multicast in
a cooperative environment. InSOSP(2003).

15

[9] DESHPANDE, M., AND VENKATASUBRAMANIAN , N. The different
dimensions of dynamicity. InP2P (2004).

[10] DESHPANDE, M., X ING, B., LAZARDIS, I., HORE, B., VENKATASUB-
RAMANIAN , N., AND MEHROTRA, S. Crew: A gossip-based flash-
dissemination system. InICDCS (2006).

[11] DIJJER. http://dijjer.org.
[12] FORD, B., SRISURESH, P., AND KEGEL, D. Peer-to-peer communica-

tion across network address translators. InUSENIX (2005).
[13] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIERES, D. Democ-

ratizing content publication with coral. InNSDI (2004).
[14] HANSON, E. N., AND JOHNSON, T. The interval skip list: A data

structure for finding all intervals that overlap a point. InWorkshop
on Algorithms and Data Structures(1992).

[15] IYENGAR, A., RAMASWAMY , L., AND SCHROEDER, B. Techniques for
efficiently serving and caching dynamic web content. InBook chapter
in Web Content Delivery, Springer(2005).

[16] IYER, S., ROWSTROM, A., AND DRUSCHEL, P. Squirrel: A decentral-
ized peer-to-peer web cache. InPODC (2002).

[17] KONG, K., AND GHOSAL, D. Mitigating server-side congestion in the
internet through psuedoserving.IEEE/ACM Transactions on Networking
7, 4 (1999).

[18] KOSTIC, D., RODRIGUEZ, A., ALBRECHT, J.,AND VAHDAT, A. Bullet:
High bandwidth data dissemination using an overlay mesh. InUsenix
Symposium on Operating Systems Principles (SOSP)(2003).

[19] L IBEN-NOWELL, D., BALAKRISHNAN , H., AND KARGER, D. Analysis
of the evolution of peer-to-peer systems. InPODC (2002), pp. 233–242.

[20] L INGA , P., GUPTA, I., AND BIRMAN , K. Kache: Peer-to-peer web
caching using kelips.ACM Transactions on Information Systems (under
submission)(2004).

[21] PADMANABHAN , V. N., AND SRIPANIDKULCHAI , K. The case for
cooperative networking. InIPTPS(2001).

[22] PATEL , J. A., AND GUPTA, I. Overhaul: Extending http to combact
flash crowds. InWCW (2004).

[23] PUGH, W. Skip lists: A probabilistic alternative to balanced trees. In
Communications of the ACM. Vol 33.(1990).

[24] RABINOVICH , M., AND WANG, H. Dhttp: An efficient and cache-
friendly transfer protocol for web traffic. InINFOCOM (2001).

[25] RAMASWAMY , L., L IU , L., AND IYENGAR, A. Cache clouds: Coop-
erative caching of dynamic documents in edge networks. InICDCS
(2005).

[26] SELVIDGE, P. How long is too long to wait for a website to load?
[27] STADING , T., MANIATIS , P., AND BAKER, M. Peer-to-peer caching

schemes to address flash crowds. InIPTPS(2002).
[28] STAVROU, A., AND RUBENSTEIN, D. A lightweight, robust p2p

system to handle flash crowds.IEEE Journal on Selected Areas in
Communications 22, 1 (2004).

[29] STUTZBACH, D., AND REJAIE, R. Understanding churn in peer-to-peer
networks. InIMC (2006).

[30] STUTZBACH, D., ZAPPALA, D., AND REJAIE, R. Swarming: Scalable
content delivery for the masses. InTechincal Report, University of
Oregon(2004).

[31] WANG, J. A survey of web caching schemes for the internet. InACM
Computer Communications Review(1999).

[32] ZHAO, W., AND SCHULZRINNE, H. Dotslash: handling web hotspots
at dynamic content web sites. InINFOCOM (2005).

