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Abstract—We present Flashback, a ready-to-use system for The underlying idea among all these approaches is to
scalably handling large unexpected traffic spikes on web-sites. replicate or cache the data and shift the load away from the
Unlike previous systems, our approach does not rely on any in- \yep_server to a set of intermediate nodes in the network. End

termediate nodes to cache content. Instead, the clients (browsers) b first tact th int diat h d
create a dynamic, self-scaling Peer-to-Peer (P2P) web-server thatUSEr Prowsers Tirst contact these intermediate cache nodes (or

grows and shrinks according to the load. This approach translates Proxies) after checking the local browser cache. If content is
into a challenging problem — a P2P data exchange protocol that already present at these cache nodes and iffiegh then the

can operate in churn rates where more than 90% of peers can content is served directly from the cache, saving the original
leave the overlay in under 10 seconds. This is atleast an order of web-server from the request. However, the end-user browsers

magnitude higher churn rate than previously addressed research. . . .
Additionally, our system operates under two strict constraints — still do not share, in any way, the load that they create in the

users are assured that they upload only as much as they download first place. Apart from a philosophical fairness issue, cache-

and second, end-user browsing experience is preserved, i.e., lonbased approaches also suffer certain tangible drawbacks. First,
latency downloads and zero configuration or download of any the number of caching nodes (and their current load) dictates
software. We believe these are very important for wide acceptance the scalability of the system. Second, some web-sites may not

of the system. . . . e L
Various innovations were required to meet these challenges. favor caching of their data — especially, if hit-count and end-

Key among them are (a) A TCP-friendly, UDP protocol (Roulette) USer statistics directly translate to advertising related revenue.
for Tit-For-Tat data exchange under extreme churn, (b) A If the site setsi0-cacheon its web-pages, then the cache nodes
novel data structure (NOIS) for partial-data management, (c) A have to get the web-page from the original server for each
distributed hole-punching protocol for automatic NAT traversal request from end users. In this pathological case, the end-user

and (d) Automatic rendering of webpages using a technique we .
call the transported frame hack. Experimental results show the latency actually increases as compared to when there are no

effectiveness and near optimal scaling of Flashback. For a web- intermediate cache nodes. ' _ S
server (and clients) running on a DSL-like connection, end-user  In this paper we explore the simple idea of distributing the
latency increases only one second for every doubling in web- flash load back to the end user browsers (hence the name

server load. Flashback for our system). Such a system is potentially self-
Index Terms— Peer-to-Peer, Web-Server, Content Distribution, scalable — as the load increases the system scales to meet
Churn, Tit-For-Tat, Overlay Maintenance, Scalability the demand. Secondly, in such a system all end-user requests

can be logged by the web-server if need be and third, this

Relevant Technical Area(s) t Id Kk well if th b t not t
Peer-to-Peer, Web-Server, Overlay Protocol Design, Wide-AreaSyStem would work well even It the web-page was set not 1o

Networks, Content Distribution be cached.
The lure of a cache-less (free of cache nodes) approach has

spurred ideas and techniques on how such a system might be
|. INTRODUCTION developed ( [17], [22], [21], [30]). However, these systems
Handling sudden spike or flash loads is an ubiquitoffer certain drawbacks. First, they assume the users will be
problem for web-site hosters. High-traffic sites usually ovego-operative and stay in the P2P for a certain period of time.
provision their bandwidth and CPU to handle the spike loa§econd, they do not address the issue of users being behind
However, even these sites sometimes face unexpectedly Higiwork Address Translation (NAT) devices which block
flashes. For example, on 9/11, many leading news sites buckilegepming connections. Third, they are either not transparent
under the flash load and were forced to scale down the conténtthe user (require to setup a proxy or download some
on their sites. Other web-site hosters use paid third-paggftware) or require changes to HTTP. To the best of our
service providers (e.g. Akamai [5]) to handle the distributioknowledge, Flashback is the first out-of-the-box deployable
of ‘rich media’. This is in addition to the web-caches (e.gand working system that is capable of preserving the user's
Squid) and proxies that many ISPs and organizations alreallowsing experience while making no assumptions that the
maintain. Recently, Peer-to-Peer (P2P) content distributigger will be co-operative.
systems based on volunteer machines have also been proposéthlike a web-cache system, a cache-less system faces a

and deployed (e.g. Coral Cache [13], Squirrel [16], etc.). different set of challenges. In a web-cache system (both
infrastructure and P2P approach) a set of intermediate nodes

Lhitp:/imww.squid-cache.org/ maintain full copies of popular web objects. The main prob-



lem, here, then is that of finding the particular intermediatffective but it works best with UDP. TCP hole punching is
node fast enough that holds the needed web object. Seconddsp possible though much more unreliable. To maximize the
problems include that of cache-replication (how to replicatdility and acceptance of Flashback, we decided the whole
web-objects according to their demand) and cache-evictiprotocol would be based on UDP. In addition, we also came
(deciding which ‘old’ web-objects to evict to make room foup with a new distributed hole punching protocol to relieve one
the new and in-demand web-objects). central server from participating in each hole punch request.
In a cache-less system, all end-user nodes that visit a particThe decision to base Roulette on UDP had a cascading
ular web-site are interested in the same web-object. Thus #féect on the design of Flashback. Roulette now had to be
problems of cache-replication and cache-eviction disappeexplicitly designed to do flow and congestion control (we
Instead, the problem, now, is finding the set of other endkipped error recovery) to be friendly to other TCP traffic.
user nodes dynamically who might be able to supply the webBurther, this decision catalyzed a design for a more flexible and
object. If the nodes are non-cooperative or selfish, howevegmpact chunk management sub-system. Flashback, therefore
then there are no nodes that posses the whole web-objechanages chunk information in intervals using a novel data
once a node gets the whole object, it can refuse to suppgtyucture we call NOIS (Non-Overlapping Interval Skiplist).
the object to anyone else (a problem not addressed by th@©IS allows efficient data exchange in an almost stateless
original psuedoserving [17] proposal or even CoopNet [21Jnanner and facilitates easy flow control.
The solution to this is tahunkthe web object into smaller We tie all the different components into one system that
pieces and have the end-nodes exchange the pieces with gaekerves end-user browsing experience. When a user visits
other. This kind of chunk-based, tit-for-tat incentive basesh overloaded site that is running Flashback, she is served a
policy is a popular technique used in large-file P2P contemtodified web-page and a small applet that contains the code
distribution systems (such as BitTorrent [1]). for the Flashback peer and a stripped down web-server. The
The question, then is, whether a protocol like BitTorrent cawriginal web-page is then downloaded by the flashback peer
be used in the design of a cache-less system. We argue tirad served up by the local web-server to the browser. All this
while such a system is possible, it would not be very populavorks seamlessly through a technique we call the transported
BitTorrent is designed for dissemination of large files anflame hack.
where peers spend many hours in the system. In contrast, welln summary, our main contributions are

pages are usually small (ranging from tens of KBs to hundreds, A fully functional and deployed system, Flashback, that
of KBs). Secondly, the web-page must be downloaded and can distribute web-pages scalably without intermediate
displayed in the order of seconds for a normal web experience. ¢5ches

Consequently, peers participate in the system in the order, Roulette: A UDP based content dissemination P2P pro-
of seconds. Within this extremely small time frame, an end-  gcol that works in extreme churn

user node must be able to find other nodes and successfully A novel data structure, Non-Overlapping Interval Skiplist
utilize its bandwidth to download the web-object as fast as  (NOIS) for chunk data management

possible. The crux of the problem in a cache-less system is, A distributed hole punching protocol for automatic NAT
therefore that of successfully being able to find other peers and {raversal

exchange data in an extremely high rate of churn. BitTorrent, A technique, Transported-frame hack, to seamlessly re-
is not designed for this extreme churn and, as we show in our cryit browsers as web-servers and display web-pages
experiments, this results in large end-user latency (to download ithout user intervention

a web page) that is way beyond the patience of an normaLI-he rest of the paper is organized as follows. In Sec-Il we

web-user. %esent an overview of Flashback, how it works and meets

To address this research c_halllenge, We propose R.OUIG & requirements for a seamless browsing experience. In Sec-
a UDP based P2P content distribution protocol that is a we describe the problem with extreme churn and the
to operate under extreme churn to distribute even small ﬁliée

(couple of KBs to hundreds of KBs) with low latency an ec-1V, we describe the Roulette protocol in full and compare

n a T|t-F_or-Tat manner. Roulette emplpys a unique Ove”%/to BitTorrent and normal client-server system in Sec-V. We
construction and maintenance mechanism using a stocha;

. . . ) .3gﬁlore related work in Sec-VI and conclude in Sec-VII
revolving neighbor cache (hence its name) that is strongly tie
to data transfer. Roulette uses UDP to solve another critical
design constraint — that the end-user should not be asked to
download or configure any software when using Flashback,Flashback is designed from the ground-up to be easy to use
i.e., a seamless web-browsing experience. Many end-usersfarghe end-user while also being easy to deploy on the server
behind NAT (Network Address Translation) devices. Thesade. We first describe the major goals of Flashback and an
devices block uninitiated incoming connections. Thus, curreoverview of how the whole system works.
P2P systems require the end-user to be fairly sophisticated in Goals of Flashback: The two main goals of Flash-
understanding this technology and require them to ‘open upéck are : (1) Unchanged user web-browsing experience and
certain ports on their NAT devices. Techniques to do automafi®) A ready-to-use system that can be deployed and used
NAT traversal are therefore popular to remove this burden frommediately. Taken together, these goals meant that Flash-
the user. A technique calldtble-punching [12]is particularly back needed to work across different operating systems and

cific techniques in Roulette designed for handling it. In

II. FLASHBACK OVERVIEW



browsers unchanged (or a change to the HTTP protocol, like  Webserver User Browser

Overhaul). Secondly, the system should preserve the browsing |
experience and not require any more expertise than is required | ygtp-serve ] Web-Page
for simple browsing. For example, it should not require users |2
to remember and append a URL to access another URL (like Visible Frame , 9
in Coral Cache) or install new software (like Dijjer [11]). We 5 Fla;hback Htfyg%
now describe how Flashback works and meets these two goals. | Flashback E 27 o TIPS

Seeder , J M.

Invisible Frame

A. How Flashback Works

A user who needs content from an overloaded web-server
must participate in Flashabck where he/she downloads and
uploads data to other users. This is similar to P2P contdpft 1- Flashback: High level design showing the flow of data
distribution systems such as BitTorrent [1] (BT) where the
peers trade data amongst each other to reconstruct the original

file —in effect acting as servers themselves and reducing {f&tep-9). The browser then displays the web-page in the larger
bandwidth load of the original server. However, to maintaifgame.

our constraint thagny user be able to participate, the user |t gny of the links in *hot.html’ are relative links, they are

should not have to download, setup or configure a third-pagyf fetched through the local web-server (and in turn by the
software. Thus, we dynamically recruit the browser itself {jashpack-Peer). This is because the browser thinks that the
be part of the P2P system. We evaluated two alternatives){a| host is the source for the web-page. An external link,
gch|eve this: (1) Write extensions to all popul_ar browsers Fﬂ)wever, is fetched by the browser as usual. Thus, if a site
incorporate the P2P software or (2) Dynamically load theaintains links to advertising images, these are not served by
functionality into the browser via Java Applets. We chosgyshpack but directly from the third-party site. The owner of a
(2) for several reasons. First, using \_Java-applet technologysf%, therefore has full control on which web-patéand even
probably the most Browser/Platform independent way 10 10ghich parts of the web-pages) are to be served via Flashback.
functionality into the browser. Second, loading of applets.calrhe flashback-seeder is started at the root of the web-page
be made transparent so that the user does not have to ingf@llarchy. When peers contact the seeder for a file, it only had
any plugins or extensions and thus deployment of the systegyyq 5 relative lookup for a file on the local machine. Thus, on
in independent of the end-users (of course, assuming that UsRES\veb-server side, no changes are required, except starting
already have Java plugin installed). . _ the flashback seeder and serving the modified split web-page.
We explain the flow of data in Flashback using Fig-Igyrther, the split web-page can be served only in case of a
When the end-user browser visits a Flashback-enabled W?é?ge load. Thus, during normal load, the original web-page
site (Step-1), say ‘hitp://abc.xyz.edu/hothtml’, a ‘two-fram€s served as usual but as soon as high load is detected, the
web-page is served to the browser (Step-2). One framegsjit web-page is served. On the end-user side, the user either
invisible due to zero pixel height and other frame (initially ets the normal hot.html file or an applet that initializes itself
blank page) takes up all the visible real estate on the browsgsq automatically downloads and displays the web-page, thus
The invisible frame is instructed to download and initializ«,%equiring nothing different for the user to do. The only extra
the Flashback applet. The Flashback applet is made up of t@y js that the applet requires permission to send and receive
main components: (&) Code that runs a Flashback-peer and{By from other peers. If the applet is signed by a certificate,
A tiny web-server (called Pygmy) that s_tarts on the Io_calhostthiS shows up as a pop-up dialog box. Once the user ‘accepts’
(127.0.0.1:.9QQO.) (and thus not accessible frqm outside). Af@iicking yes) the applet, the web-page automatically displays.
the applet initializes both the components, it instructs the larg¢,s no download or configuring or extra typing is required

visible frame to display ‘http://127.0.0.1:9000/hot.html'(Steprrom the users part. This design therefore satisfies all of the
3). Thus the applet automatically rewrites the initial URlgiginal design goals for Flashback.

_to point to the local web server. This call from the applet Why serve two frames instead of one simple blank web-

is handled by the browser which makes a HTTP-request 19407 This is because of the subtlety in how applets are
pygmy (Step-4) for ‘hot.html. Pygmy in turn relays it to th,nqleq in a browser. If there is only one frame and the applet
Flashback-Peer (Step-5). The Flashback-peer then contatigs the prowser to load the web-page there, the browser
the Flashback-seeder (Step-6) to get the meta-data for ffjrects to the local pygmy server, the applet is stopped

file. Once it gets the meta-data it begins trading with othgf5,se the browser has moved on to a new page — in effect
Flashback-peers (it gets ‘initiated’ into the Flashback OVer'@fopping both the Flashback-peer and the pygmy server, and

initially by the_ s_eeder). to download th_e file. Once the file i§, o nothing will be displayed to the user. The two-frame
downloaded, it immediately stops trading and hands over tB@sign is what we term as the ‘Transported Frame Hack”
file (all files are stored in RAM) to pygmy (Step-8) which

in turn marshalls it as a HTTP-response back to the broWsegWe use the term web-page to mean a set of file-objects that are needed to

display the web-page correctly, for example the embedded images, CSS files,
2http://pygmy-httpd.sourceforge.net/ javascript files, etc.



(Similar in spirit to the Transported-Man magic trick wherg@rocess is repeated and the peer now obtains two neighbors.
the magician uses his twin brother to fake the illusion ongow, this peer knows both endpoints of its two neighbors and
person doing impossible tricks.) can act as the intermediary in a hole punch process between
them. The server is not needed in this hole punch. In effect,
. . . ._peers start acting as intermediaries for their neighbors’ hole
B. Automatic NAT Traversal with Distributed Hole Punchm%unch process, i.e., a distributed hole punching process. The
In designing Flashback, we wanted the use of the systdyauty of this is that the seeder is now in no way special as
to be seamless and also be accessible to a wide populatfan.as getting more neighbors are concerned and just another
Thus, one of the high level requirements for Flashback igighbor peer.
that the system should be able to run even without end-
user intervention. Thus, peers must ideally be able to form
connections with each other automatically, even if some them
are behind NAT devices (NATs for short). NATs, in brief, The primary requirement of Roulette is that it can operate
multiplex many end-user nodes into one public IP(v4) addresgder extreme churn. We term extreme churn as a 50% or more
This is useful for home users that have many computers mitange in the P2P overlay in under 10 seconds. In this highly
only one IP address or ISPs that are short on IP addressigamic setting, normal P2P content distribution approaches
The main problem with NATs is that, by default, they do nogither fail or degrade significantly. We use the case study of
allow new incoming connections. For a node behind a NAT ®itTorrent to explain why. We describe our approach to tackle
accept new incoming connections, the NAT must be explicitgxtreme churn and the two specific requirements that arise
configured to allow incoming packets on certain ports (openimgt of that approach. How these are tackled in Roulette are
ports on a a NAT). This issue is one of the major stumblingescribed last.
blocks for a P2P protocol. Most P2P systems require the end4) The Problem of Fast Download Under Extreme Churn:
user to be able to access their NAT-devices and change fifee nature of P2P web-page distribution requires that a
settings to open ports. Flashback-peer be able to download the requested web-page
Automatic NAT traversal is possible using a techniquas fast as possible and in an extreme churn environment.
called “Hole Punching” [12]. Hole punching requires a welltronically, the faster, peers are able to download the web-
known server that is not behind a NAT. Hole punchingage, the more churn they create (if it is assumed that they
has certain subtleties, especially in the case of TCP aate selfish and leave immediately after the download). The
these are discussed in detail in [12]. UDP hole punching @&erage end-user patience for a web-page to load is around 10
relatively more straightforward and robust. We experimentestconds [26] and thus we would expect churn in the same time
with TCP hole punching as well but quickly realized that itange, i.e., the overlay network can completely change in under
was unreliable — especially when the NAT devices maintaindf) seconds. In this time frame, peers must be able to trade
TCP connection state. As [12] reported, UDP hole punchirand download a web-page. Previous research has addressed
worked across 82% of NAT devices compared to 64% in TCP2P data exchange in high churn environments where peers
Given these factors, we decided to design Roulette to wdnkve a life-time of couple of minutes [20] but Roulette faces
over UDP. A concern with hole-punching though, is the impaeth order of magnitude different churn rate leading us to term
it would have on the seeder. If each Flashback-peer involviédas extreme churn. Further, unlike other P2P system, we
the seeder each time it wanted to do a hole punch, the overheadume the worst —i.e. peers can leave as soon as they have all
on the seeder may be too high. We tackle this using distributde data. Thus there are no long term peers to take advantage
hole punching. of ( [29], [7], [9]). Fast download under extreme churn is
For hole punching to work correctly, a “middle” server mustherefore the primary design goal and research challenge for
know both endpoints of the two nodes that want to establistR@ulette.
full duplex connection to each other. When a Flashback-peerAssuming users will be selfish and leave immediately is not
first contacts the seeder, it sends the IP and port that it seesurifealistic and in fact might be the right thing to do. In P2P
the peer is behind a NAT, this is the IP and port that the NAfile sharing systems (such as Gnutella [2]), most users tend
has assigned. The seeder replies back with the IP and port tieaact selfishly. In the context of web-content, a minute or
it is seeing. This will be the IP and port of the NAT devicetwo of altruism would probably not hurt the user. However,
Taken together, these constitute the “identity” of the peer. Botre feel that if the user is given strong guarantees that he/she
the seeder and the peer now have this identity informatiomill only upload as much as they download, they would be
Once a peer discovers its own identity, it begins to searomore accepting of such a system. Further, for certain ISPs
for other neighbors. It starts be asking the seeder to refemibere users are charged according to bytes transferred, this
to another peer. The seeder then acts as the intermediaryeiquirement becomes especially critical.
the hole punching process. It sends the new peer’s identity toWhy should extreme churn be a problem? To answer this
one its random neighbors. It also sends the neighbor’s identifyestion we first study BitTorrent, a popular P2P Tit-For-
to the new peer. The two peers then attempt hole punchifi@t, content dissemination protocol that works very well in
Note that each peer has the other’s both endpoints. If the hplactice. BitTorrent is primarily designed for dissemination of
punch succeeds, packets start flowing in both directions anthege content and where peers stay in the system typically for
full duplexconnection now exists between the two peers. Thimurs. We then examine why simple maodifications or tuning

IIl. ROULETTE: HANDLING EXTREME CHURN



to BitTorrent are not sufficient for it to be applicable for smalare disappearing fast, it helps to have a large set of them with
file dissemination under extreme churn. We then presentviom data can be exchanged. Second, due to the large number
key insight that is the driving factor behind most of Roulette’sf neighbors it will not matter what bandwidth one particular
design. neighbor is providing; the large quantity of them will result in

A Brief Primer on BitTorrent: In BitTorrent (BT), the overall effective bandwidth utilization. However, the neighbors
content distributor first creates a ‘torrent’ file (MetaData aboshould be such that data can be traded with them, i.e., they
the file) which has to be downloaded first by each BT peeare compatible.
The torrent file contains information how many ‘pieces’ a file This solution however, is not efficient in BitTorrent. First, in
has been chunked into and a SHA hash for each piece. TBIE a peer updates all its neighbors on each chunk download.
piece size is decided initially by the content distributor and iBhis overhead becomes large when there are a large set of
usually in the range of 128KB-1MB. When a peer downloadseighbors. Second, since neighbors are arriving so frequently,
a piece, it verifies the downloaded piece against the hash andandshake of the chunks possessed must be done frequently
finally when the whole file is downloaded, verifies that as weladding further to the overhead of the protocol. Third, there
A seeder peer is also created that has the whole contergsanecdotal evidence that TCP congestion control starts to
Additionally, there is also a ‘tracker’ that co-ordinates thbehave erratically when data transfer happens simultaneously
whole download process. Peers contact the tracker to obtairer a large number of connections resulting in poor through-
the list of other peers who are currently downloading theut.
file and establish connections to them. When a peer firstin Roulette, we use a two-pronged approach to handle
contacts another peer, they exchange a bit-vector indicatiagtreme churn. First, we implement a stochastic neighbor
the pieces they already have. This allows each peer to figuegommendation policy that is tied to data transfer. This allows
out what missing pieces the other peer can provide thepeers to recommend compatible neighbors for other peers.
After that, a peer updates each of its neighbors with the pie@econd, we reduce the overhead of meta-data exchange by
id of every piece that it successfully downloads and verifiesliminating the need for a peer to send updates to its neighbors
This allows each peer to maintain a ‘stream’ of requests fon each chunk download. We describe these in more detail
pieces to ask from neighbors. Peers therefore maintain pieggv.
‘state’ about their neighbors. It is worth nothing that a peer,
at a certain time, is only trading with 4-5 of its neighbor
even though it pre-opens TCP connections to as many as
other peers. Using a technique called ‘optimistic unchoking’ How peers find, keep and delete neighbors has a large
a peer slowly moves towards trading with those peers thigipact on the type of the overlay formed and consequently
give it the maximum utilization of its bandwidth. Peers alsen the data exchange between peers. In Roulette, we have
regularly inform the tracker of their progress and the trackéesigned a new overlay construction protocol that is explicitly
also continually checks if a peer is still in the system or hdied to data transfer so that peers can find compatible peers
left. fast. In a sense, we have merged a decentralized heart-beat

Drawback of BitTorrent under Extreme Churn: protocol into the data exchange process and use it for overlay
BitTorrent is designed to scalably distribute large contegpnstruction.
(hundreds of MBs) where peers stay in the system for hoursFurther, the seeder does not explicitly try to construct or
The design choices and default paramater values of BT refleutintain any particular type of overlay resulting in a fully
this. However, a deeper problem with trying to use BitTorrestecentralized overlay construction and maintenance.
to trade small files in an extreme churn environment is its Keeping up With Lost Neighbors: Due to extreme
philosophy of doing business ehoose a few but ‘rich’ churn, neighbors disappear quickly and thus it is important to
neighbors(choosing the 4 peers out of 50 to do data exchan@geep a good fill of neighbors. Each peer is initialized with
with). A BT peer implements this philosophy using ‘optimistidwo important parameters)inDegree and MaxDegree
unchoking’ to find richer and richer peers (peers with mon@efault of 4 and 32 respectively). When a peer has less than
bandwidth). This however, will be ineffective under extrem@/inDegree neighbors, it continually seeks new neighbors by
churn. First, it may be extremely hard to get an accurateying to add a new neighbor every 100ms. Once, it has the
estimate of the bandwidth in the short time frame. Thus fitinimum required number of neighbors, it still continues to
will be hard to discern how rich a peer really is. Second, ttecquire more neighbors (to compensate for leaving neighbors),
extreme churn rate implies that the chosen few neighbors nmiayt the neighbor-seeking rate slows according to its degree. If a
leave quickly reducing a peers throughput until it finds othgreer has more thah/axz Degree neighbors, it stops acquiring
peers to ramp up its bandwidth. By the time it finds othereighbors. New neighbors are sought by randomly choosing
trading neighbors, some of the current neighbors may leawa existing neighbor and asking it for a ‘recommendation’.
Thus a peer may never be able to utilize its bandwidth fully, Referring Neighbors Using the Roulette Cache:The
resulting in a slow download. key intuition behind this is that a peer keeps a ‘revolving

Our Approach to Tackle Extreme Churn: We make cache’ of the most recent neighbors with whom it has ex-
the observation that the key to handling extreme churn migtitanged data. When it has to recommend a neighbor to
infact be to use the opposite philosophy of BitTorrent, i.eanother peer, it chooses stochastically from this revolving-
choose many but ‘compatible’ neighbors When neighbors cache (hence also the name Roulette). A separate cache is kept

%ZOFinding Many Compatible Peers



for each file is that is traded. When a peer wants to find newlIn Roulette, we eliminate these updates to neighbors. Instead
neighbors it asks its current neighbors for recommendatiopgers do a an explicit handshake each time they need meta-
The recommended peers are one that are most likely to deta information from their neighbors. In an extreme churn
still active and also possess some data for the file(s) that #/ironment, this scheme (no update, explicit handshake)
requesting-peer is interested in. Since peers are leaving fasdy be quite appropriate because a peer may be doing a
it is essential that a peer find compatible peers that are alsb of handshakes anyways due to the extreme churn rate.
active. Handshakes are costlier than updates and thus must be made
Whenever a peer sends or receives data (chunks) froméfficient. Roulette uses an interval-based approach to tackle
neighbors, it adds them to theoulette-Cache (RC)rhe RC this. In a handshake, a peer sends the top intervals of data
is a variable sized cache with the number of slots varying blyat it has. An interval-based representation allows for a
the peer's current degreeuDegree). A neighbor is added compact representation of chunk information and thus a lower-
to the end of the cache (higher slot number). The cacheaserhead data exchange protocol. For example, consider Fig-
then trimmed back, if necessary, tarDegree slots. The 3 where a peer has downloaded certain portions of a file. If
neighbors trimmed are at the front of the cache (lower slottervals are used, the peer can encode the full information of
numbers). To recommend a neighbor, a peer probabilisticalihat chunks it currently has. The numbermafn overlapping
selects a neighbor from the RC. The probability of selectingtervalsof data a peer has downloaded dictates the amount of
a neighbor from the cache idotNumber/ ) ;_, k, where handshake data it must transmit. The handshake information
s is size of the cache. Thus, the probability of choosing tsan potentially reduce as a peer ‘fills in the gaps’ and, initially,
directly proportional to the slot number, i.e., the neighbosshen a peer has a small amount of data, it also has very
most likely picked from this cache is one with whom the pedew intervals. The main advantage of non-overlapping interval
has most recently sent or received data from. Secondly, ttepresentation is that the handshake overhead is not constant
more number of times a node has traded data from a neighl{onlike a bit-vector representation) with every handshake but
the more likely its recommendation since a neighbor can esignificantly reduced in the initial and final stages of data
present multiple times in the RC. download. To aid in meta-data exchange of intervals, we
Detecting and Repairing Overlay Partitions: Occa- developed an extension to SkipLists [23] that can maintain and
sionally, a group of peers can become partitioned from tlearch for non-overlapping intervals@n Logn(N)) time. We
main overlay due to high churn. Then, after some timegescribe this lightweight and easy to implement data structure
everyone has all the chunks in the group and there are no maest.
‘compatible’ peers. Thus, peers must watch out for partitions NOIS: NOIS stands for Non-Overlapping Interval
actively and find compatible peers again. We use a simple aggiplist. We use NOIS to store the intervals of chunks (not
completely local technique to guard against partitions. A pegytes) that have been downloaded for a file. Since the Roulette
continually tracks how much new file-data it receives evegata exchange protocol uses intervals extensively, it is impor-
500 ms. If it does not receive any new data, it suspects it mgght to have a data structure that supports addition, deletion and
have become partitioned. It then asks the seeder for a nesarch for intervals efficiently. A skiplist [23] is a probabilistic
neighbor, since the neighbors of the seeder are, by definitierta-structure that approximates the functionality of a balanced
not partitioned. Once the peer is connected to a neighbortafe (providingO(Log(N)) search, insert and delete) w.h.p.

the seeder, it is back in the main overlay. Skiplists are most used to store single point values. How-
) ever, for Roulette, we need to store and manipulate intervals.
B. Low Overhead Data Exchange in Extreme Churn Generalized intervals-skiplits [14] have been proposed for

Keeping overhead low is an important requirement in ordgtabbing queries that function similar to an augmented interval
to maximize the ‘useful’ file-data that a peer transfers. Ired-black tree but fully-general interval skiplists are an overkill
most P2P system, peers exchange meta-data about what gartur application. We know that the intervals we need to
of the file they have. This allows each peer to know whahaintain are non-overlapping (if duplicate data chunks are
actual file data to ask or give to another peer. The meta-daégeived, they are discarded) and hence a simpler data structure
is usually the chunk-ids of the chunks a peer has downloadedn be built. In NOIS, each skip-node is similar to a node in a
encoded in some fashion. In Bit-torrent, two peers initialljormal skiplist, except that, a range is maintained in each node
exchange a bit-vector where the bit number corresponding(fig-3. Further, the operations (search, insert, delete) in NOIS
the downloaded chunks are set. After this, a peer explicitye all range based. The search operation is similar to normal
updates each neighbor with the chunk-id of each new chuskiplist search (with checks of overlapping or containment).
that it downloads. When the files being traded are small, thihe case of interval deletion and insertion are more special
chunks have to be also small to allow for parallelism in thsince an insertion may lead to merging of intervals and deleting
system. Web-objects can range from sizes as small as coupla &mall portion of a large range leads to creation of more
KBs (simple HTML page text) to tens of KBs (CSS, javascripthtervals. NOIS has been released as open-source software
to hundreds of KBs (images) to tens of megabytes (music and
video files)_ For small file sizes, say tens of KBs, data chunks*various other alternatives to design an efficient handshake method are
may need to be as small as 512bytes. Updating a large nun%@ﬁible. For example, sending a fixed-length bit-vector using Bloom Filters.

. e are currently exploring this and other alternatives
of neighbors on each of these small chunk download can easily, Java implementation is available at
become a significant fraction of actual data downloaded. http:/mww.ics.uci.edu/ mayur/software/nois.jar



File Meta Data Meta Chunk resents. When a peer downloads all chunks of a MetaChunk,

(FMD) _ Meta Chunk (MC) CT;:tks it can immediately check if the MetaChunk is valid, If not, it
Filename List A MC p—— discards all data for the particular MetaChunk. A MetaChunk
— MC-0 Digest Y is an umbrella for faster validation of downloaded content;

—— MC-1 AFI; “hL;"ES Ck-1 bytes it has no influence on what or how many chunks one peer
File Size s VZ?i::ied ' will transmit to another. After the FMD is successfully by
File Digest Chunks |/ Ick-15 bytes the peer, various data structures which together constitute the
MC - List Me-3 List representation for the file are initialized (shown in Fig-3.

Fig. 2. FileMetaData (FMD) Data-structure A. The Data Exchange Process

At a high level, Roulette data exchange can be broken
Topintervals [ 08 | 3642 | 2024 | 5455 | down into two parts, the receiver side and the sender side.
[ ] An algorithmic description of both sides are shown in Fig 4
L - and Fig 5 respectively For each neighbor that a peer has, it
- oe 20 24 ,{36_4:2! 54.55 — continually tries to download dz_ata from them. It also has to
Have SKipList upload data to them, else the neighbor may cut off download to
it (Tit-For-Tat policy). Once the file representation is initialized
0 Chunks - with the FileMetaData, the peer is ready to start exchanging
8 20 24 36 42 54 55 data for it. We describe the receive side first followed by the
sending side.
! 1) Receive Side: On the receive side of the protocol, a
Meta Chunks peer is continually trying to download data for files. The first
step is to figure out a file for which the remote neighbor has
{ data. This is théNIT phase (lines 4-7 in Fig-4). If the remote
neighbor has no data for any file that the peer is interested in,
the neighbor connection is terminated.
Fig. 3. Data Management Layer Cake Once a file is found for which the neighbor is willing to
provide data, the peer enters into theRST HANDSHAKE
(FH) mode. Here, the peer sends the top-intervals of data that
it has for the file to the remote neighbor. For example, if the
peer were trying to download data for the file in Fig-3, and

In this section we describe in detail how Roulette actualfy is allowed to send only 2 intervals, it would ser{D,8],
does data transfer. Since we use UDP as the transport protot#,42]}. Since we use UDP, the set of intervals have to fit
much of TCP’s functionality has to be emulated. Howevel)to one message and thus the restriction on the number of
we have designed Roulette to maximally utilize UDP withouftervals a peer can send. In Roulette, the default maximum
being unfriendly to other TCP traffic. We describe theseumber of intervals in a message is 8. The remote neighbor
issues after exp|aining the data transfer protocoL Fina”y, VHSES these intervals to figure out what intervals of data that it
explain the role and functionalities provided by the Conte§@n provide which the peer is missing (line 9 in Fig-4). If the
Management Subsystem (CMS). remote neighbor says it cannot provide any missing data, the

After the flashback peer starts in the browser, it joins tH#ie is removed from the consideration set and the per goes
P2P network and waits for file request from the local weBack to try and find another file (lines 10-12 in Fig-4).
server (pygmy). The CMS is initialized for a particular file If the remote neighbor, however, says that it has data in
when the flashback peer receives a request for a file frdiirtain intervals that the peer needs (for e.g., let us assume
the pygmy local webserver. The peer then asks the flashbdlgt it sent back interval$[12,16], [28,30}), then the peer
seeder for theéFileMetaData(FMD for short) associated with transitions into the(SECOND HANDSHAKE (SH) mode. In
this file. The structure of the FMD is shown in Fig2. Théhe state, the peer sends requests to the neighbor for specific
seeder replies back with the FMD. The FMD consists of twehunks from the intervals of data that the neighbor can provide.
important pieces of information: (a) The File-ID which is al he chunks to get are selected at random (line 14, 17 in Fig-
unique id that is seeder generated. This File-ID is used By To continue the example, let's say the peer asks for chunks
peers to refer to the file with each other, since the actug}6, 2% (How many chunks a peer asks for is controlled by
filename may be quite long and impose unnecessary overhdBgBurst Size- an important parameter in congestion control).
The FMD also contains an SHA hash of all the file’s contents After sending this second handshake out, the peer waits

so that when a peer downloads all content of the file, it cd@ get the chunks from the neighbor, i.e., it moves into the
Verify the |ntegr|ty Of the f||e WAIT FOR DATA (WFD) mode (Iines 19-23 in Flg'4) Where

The FMD is made up of a list of MetaChunks. A . _
While the figure shows the use of Goto statements, we have not actually

MetthU”k represents a set of chunks (by default 16_) aﬂ%lemented Roulette that way. We use 8tate Design Patterto implement
contains the SHA hash of the contents of the chunks that it rape transition among the various states in the receive process.

800 ooo 14
Actual File Data Received

0 2160
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it waits for data chunks to arrive and then handles then. e ai data for all pending files are not received

Handling a chunk involves updating data structures in tl#& FOR EACH neighborX’ DO
content management subsystem and also updating the Roul%tte"\“Tl'F X File is NULL
Cache. If the peer gets only some (or none) of the chunksj)it Initialize X File to a mutually interesting file

. . IF h fil ist:
timesout and goes back to second handshake mode again (Eﬁow Removex from Neighbor-List

long to wait for timeout is a function or RTT and bandwidtt$) FIRST HANDSHAKE: o _
: . i . 9 Initialize { X.File.Intervals} to missing data intervals
estimate). If it gets all requested chunks, it immediately goefg, IF X{.File Intervals} is 0

back to second handshake. This time around it has a fewer RemoveF' I LE from mutually interesting set
range of chunks to choose froni[{2,15], [30]})). This cycle 13 seconp ianbatake. o

from second handshake to wait for data continues until thée ISFelegt}gChg?lng,s}mfrom X.FileIntervals
peer gets all the chunks in intervals that the neighbor originaﬁﬁ) SOhunk-IDs) S0 ke

promised. Once this is exhausted, the peer goes back to ﬂ?tWAéslééfR fgrA %{hunk‘ws} data chunks
handshake to try and get more intervals from the remoﬁ As data chunks are received

neighbor (line 16 in Fig-4). The process is continued untip) Update data intervals faf'ile

h Il the data for the fil th t iah 21 Add X to Roulette-Cache

the peer gets a _e ata tor the nie or € remote ne.|g b& IF All chunks have been received or TIMEOUT
can no longer provide any data. In the latter case, a different GOTO: SECOND HANDSHAKE

file is then chosen or if no such file is available, the remote
neighbor connection is severed.
Since the whole protocol runs over UDP, there is nBg. 4. Roulette Data Exchange Protocol:Receiver Side
reliable delivery. Thus, with every request message that needs
a reply (First Handshake and Second Handshake), a timeouf,is,,,ex message frony” arrives
associated. If the timeout expires, the message is resent. EfiS IF v has violated Tit-For-Tat
happens a fixed number of times (default is 4). If there is S etsage o aoking th mply mitding data intervals
no reply, the remote neighbor is assumed dead and remoged  SEND intervals we have that Y is missing
from the neighbor set. B P message i asing lor data n cunkcics
2) Send Side: A peer also has to reply to handshake) Add Y to Roulette-Cache
requests from its neighbors and send them data chunks. The
reply side is much simpler as compared to the request side:
Upon getting a first handshake request from a neighborFig. 5. Roulette Data Exchange Protocol: Sender Side
peer checks thdit-For-Tat (TFT) policy first. If more data
has been transferred to the neighbor than has been received, the
peer silently drops the first handshake request. The TFT poligyervals are sent back asFRST HANDSHAKE REPLY .
in Roulette is strict. A remote neighbor is only allowed to ‘run In reply to a second handshake request, again, a check for
up a tab’ of 4K in data or 90% of received data, whichever iBt-For-Tat is first carried out. If this passes, the peer sends
higher. Note that that the TFT policy is not restricted to a filthe chunks for the chunk-ids that are requested (checking, of
but all data transfers for all files for that particular neighborourse, that the peer has the data for those chunk-ids and the
Dropping the request when TFT fails, rather than sendirgyrst of the data that the peer has asked for is not violating
a denial message back to the neighbor is an explicit desiire TFT policy).
mechanism. When the request is dropped, the remote neighbds) Remote Neighbor RTT and BW Estimation: Estimat-
will be forced to send rerequests. This is ‘grace period’ duririgg a packet’s Round Trip Time (RTT) and the bandwidth to
which the remote neighbor must make up to this peer. Else,asemote neighbor is important to take timely decisions. For
per the request side protocol, the remote neighbor thinks tlelsample, if the RTT is known, then a node can decide whether
peer is dead and removes this peer from its neighbor list. Thahould retransmit a request when no reply is received within
peer however does not remove the neighbor from its neighkeoparticular amount of time. Since we use UDP as the transport
list. The peer is present in the neighbor cache until it is garbageotocol, packet loss detection and reliable transmission must
collected much later by the overlay management layer. Duribg handled explicitly at the application layer. Most operations
that time, if the neighbor connects back again, the peer wdt the application layer are of ‘Request-Reply’ nature, for
still not respond to any requests. This combination of policiexample, random neighbor, first-handshake and second hand-
ensures that peers have no incentive to cheat or ‘leech’ effake operations. When a remote neighbor is sent one of these
other peers. messages, it is expected to reply back with an appropriate reply
If the remote neighbor passes the TFT test, then the peeessage. If it does not reply within a certain amount of time,
must respond appropriately. This involves figuring out if it cawe resend the request. The default RTT estimate between two
supply any missing data intervals for the file. First, the peeeers is initially set to 100 msec. Every request message is
checks if it has the file. If not, it responds withNO_FILE tagged with a sequence number. The reply to the request mes-
reply. The remote neighbors will then try with another file. Iage contains the sequence number enabling a node to estimate
the file exists, then with of the content management subsystédm RTT for the particular request (which is “smoothed” with
(CMS), a list of intervals that this peer can provide and whiokach successful RTT estimate). For data chunks however, this
are not present at the remote neighbor are created. This lisesfimate is revised to take into account the bandwidth intensive




nature of the data chunks. Initially, the bandwidth betweeshaded-grey. When a remote neighbor sends a first handshake
two peers is set to zero. The bandwidth value is only updatetessage to ask for intervals of data a local peer can provide,
when multiple data chunks are received in sequence. The intie local peer first makes a ‘clone’ of the lo¢#dve-Skip-List
arrival time between the data chunks is used to calculate th¢SL). The remote intervals are then deleted from this cloned
bandwidth asChunkSize/Inter ArrivalTime. Bandwidth HSL. The intervals that are left over are the intervals of the
estimate is also updated smoothly. Using this bandwidttata that the local peer has but which the remote peer does not
estimate, a node expecting multiple chunks calculates thave. The top intervals in this cloned and deleted skiplist are
timeout for the arrival of the next chunk 8sCurrentRTT+ then sent to the remote neighbor. Each deletion(g Bog(N)
Bandiwdth/ChunkSize. The factor of 2 fortCurrentRTT  operation, wheréV is the total number of intervals in the skip-
is to make the timeout conservative to account for sporadist. The remote peer is only allowed to send a certain fixed
congestion in the network and delays within Roulette’s readimber of intervals, so this whole operation is O(Log(N)). The
and write queues. cloning operation can also be implemented efficiently with a
4) Flow and Congestion Control: The application layer memory copy.
also has to provide for flow and congestion control. Flow When a remote neighbor sends a second handshake message
control and congestion control are implemented in a single ask data for particular chunk-ids, the local peer makes a
elegant stop-and-goscheme in Roulette. After the secondlirect lookup into the chunk bit-vector. If the bit is set (chunk
handshake, a peer waits to receive all chunks. Only after it ld@wvnloaded), it sends the data to the remote peer. This is a
received all chunks, does it send out a second handshake agih) operation.
(to get more chunks). This results in automatic flow control. When a new data chunk is received from a remote neighbor
Secondly, the receiver-peer controls the burst of chunks thatthe receive side of the data exchange protocol, various
the sender may send. Initially the burst-size is set to a defactanges to the data structures are required. The chunk bit-
of 16. This is increased by 1 for every successful receptiemctor is first checked for duplicate chunk. If it is duplicate,
of the whole burst. Thus, data transfer between peers rantps chunk is discarded and no further changes are made. Else,
up linearly. If a whole burst is not received, the burst sizéhe chunk bit-vector corresponding to the Chunk-ID of the
is set to the number of chunks received in the current burshunk is set to 1. A check is then made to see if this chunk
Thus, Roulette does not follow any mathematical function icompletes any meta-chunk. If so, the data corresponding to all
reducing the burst but rather bases it on the actual numbercbluinks in the meta-chunk is checked for data integrity with
data chunks that actually made it all the way from the sendie SHA-hash that was originally provided by the seeder. If
to the receiver. This is possible only because of the stop-anhbe check passes, the bit in the meta-chunk is set to 1. Else, the
go nature of data transfer. Thus, when there is congestioits of all chunks belonging to meta-chunk are reset to 0 and
in the network, the peers automatically scale back the dake data for the chunks is discarded and the HSL is updated.
transfer rate and then greedily try to scale it back up slowlif.the chunk does not complete a meta-chunk, the data for the
This scheme of linear increase and stop-and-go means ttlatink is conditionally added to the Have-Skip-List. All bit-
the maximum available bandwidth between two nodes is negctor operations finish i©(1) time as does a hash-check.
exploited fully at first. However, the large number of neighboris case of hash-check fail one interval (corresponding to 16
a peer has compensates for this. ids) has to be deleted and in case of adding a data chunk,
one interval has to be added to HSL. Both &éLog(N))
operations. In case the HSL is updated, the sorted interval
data structure also has to be updated. This requires adding
The content management subsystem in Roulette is highiiie new interval, removing two intervals (due to removal of
sophisticated with multiple representations for file-data (@d chunks) or updating one interval. With a binary search on
shown in Fig-3. The core of this system is tHave Intervals the list, this can also be done ®(XN) time, since the list is
that are stored in a Non-Overlapping Interval Skiplist (NOIS}orted to begin with (and stays sorted even after the operation).
Apart from the Have Skiplist (HSL), the CMS also maintains
three other data structures. A sorted list (by decreasing size)
of the chunks intervals is maintained. This list is updated
whenever the HSL is changed. Two bit-vectors, one each forin this section, we guantitatively analyze the performance
the meta-chunks and the chunks are maintained. A set &itd scalability of Flashback, in particular the Roulette proto-
in the chunks bit vector indicates that the chunks has beenl. Preserving end-user browsing experience is the primary
downloaded. A set bit in the meta-chunks bit vector indicatgmal of Flashback and a key parameter is the latency to
that the meta-chunk has been verified. download a web-page, even when the web-server is under high
Functionalities of the CMS: Here we consider the load. Thus our experiments are specifically designed keeping
main functionalities that the content management subsystenthis in mind. We perform two major sets of experiments to
required to provide and the asymptotic cost of each operatidest whether Roulette can consistently provide low latency for
For example, consider a file (of size 25,600 bytes) that downloads. First, we perform basic scalability tests under ‘one-
currently being downloaded by a peer as illustrated in Fighot' flash loads. Second, we generate consistently high loads
3. This file has four MetaChunks and 64 chunks of 400 bytes the web-server and test whether Roulette can perform well
each. The data that has been downloaded so far is shownumder high churn.

B. Content Management Subsystem

V. PERFORMANCEMEASUREMENT
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A. Experiments Framework 60 . . T T

I

To measure the performance of Roulette and be confident 50 | “\» \’,“‘"\‘ |
that the results would be a good indication of what one could ¢ (‘“ V\‘
expect in a real deployment, we setup an Internet emulation 8 40 | [ .
testbed using Modelnet [4] — a real-time network traffic shaper ..25 3' ‘\ \
and provides an ideal base to test various systems without 5 < [ ‘ﬁ/ “(‘o‘ \ ]
modifying them. Further, Modelnet allows for customized € ol J ,w' ‘U'\ i
setup of various network topologfesNext, we describe our z | \‘ M\
experimental testbed and the network topologies that we used. 10 1| / W }

1) Testbed: The testbed consists of a FreeBSD machine 0 VA LW
as an emulator and 13 clustered Debian Linux hosts. The 0 50 100 150 200 250 300
emulator supports a Gigabit ethernet interfaces while the Linux Latency between Nodes

hosts have 100Mbps ethernet interfaces. All machines are

connected by a dedicated Gigabit router. The emulator is a dbigl 6. Distribution of latency among nodes in the Modelnet Internet emulator
processor 2.6Ghz machine with 2GB of RAM while the hostgsted

are dual processor machines running at 900Mhz with 500MB

of RAM. The emulator machine runs a custom FreeBSD

Kernel configured with a system clock running at 1000Hz (&1°0ugh approximations of DSL connections available today.
required by Modelnet). The hosts run Linux with a customizedSers may also be behind higher bandwidth connections (such

2.6 version kernef. The hosts support Java version 1.5 an@® cable-modem that can provide data rates in the Mbps range)

Python version 2.3.5. All hosts are synchronized to within twUt the primary objective is to study the scalability patterns
milliseconds through NTP (Network Time Protocol). and not exhaustively test all possible bandwidth scenarios. We
To model the vagaries of the underlying Internet, we usdgel our choice of bandwidths for end-users is a reasonable

the Inet [3] topology generator tool to generate Internet routéPProximation that can provide good insights into the real-

topologies of 5000 routers. Inet generates topologies on"/g'ld behavior of the tested protocols.
2) Comparison SystemsTo the best of our knowledge,

XY plane which Modelnet then uses to emulate inter-router ‘ o ) i
shback is the first incentive-based system that provides

(and hence inter-node) latencies. On this router backbo éa : o .
50 subnets are created and each subnet is allocated 5 hfaf1e-1ess flash dissemination capability. Thus, the exper-

for a total of 250 emulated hosts. Bandwidth constraints alfgents are primarily geared towards testing it. BitTorrent,
network packet loss rates are specified separately in Model§}V€Ver, can be a potential replacement protocol for Roulette
Primarily, we used two main network topologies: (1) a netWor.q(cnnce.B|tTorrent also provides for chunks baseq dlsgemlnatlon
where all end nodes have bandwidth of 400Kbps and E)a '_I'|t-ForTTat manner). Thus we compare \_Nlth_ BitTorrent.
another where all nodes have bandwidth of 800Kbps. F did not m_clude other P2P content dissemination protocols
all network topologies, the latency between nodes is alwa%"ICh as Splitstream [8], Bullet [18] or CREW [10]) because
heterogenous, as dictated by the router backbone generate are either designed for streaming content and/or do
Inet. We randomly picked 1000 node-to-node endpoints (ot Perform Tit-For-Tat. We tried to setup Dijjer [11] as a
of 250*250 possible node-to-node combinations) and plott&dMParison point for a cache-based system but faced many

the latencies between them. This approximates the latendpigPlems. For a baseline comparison, we alsq test a normal
peers will experience when communicating with each oth&/€nt-Server approach using Apache and ‘wget'. We describe
The latency-graph is shown in Fig-6. the specifics of the comparison systems below.

Our choice of bandwidths for nodes requires some expla- BitTorrent: We downloaded and used the python source

nation since the testbed imposes certain restrictions. First, ﬁ?ede fF’r B|tTorren.t (BT), version 4.0.2. QUt of the box, BT
maximum bandwidth generated in the testbed cannot exceeld fonflgured for d|ssem|nat|on of large files and for nodes to
Gbps (bottleneck of emulator NIC card and router). Second,f‘?gelzc_j as long r‘;"s po(sjs!ble. T:us, vr\]/e macéezrcertamdcharllgeds o
keep the emulator from being overloaded, we did not want\}goé Irst, _vved i_lan_ge_ I S(;). t Tt when aTh peer (;wn oah S
generate data at such a rate that the emulator CPU usage W required file, it immediately exists. Thus, apart from the
above 10%. Third, while Modelnet provides for running man pitial seeder, therg are no extra seeder_s at any t'm?' Ngxt,
virtual nodes in one physical host, we did not want to crea ¢ changed the piece size. The default is .256KB'. W'th this
S0 many processes that the swap space was being used. uflgigult, BT performed very polorly for small files. This is easy
these constraints, we would still like to simulate reasonabif® understand. When the file is less than 256KB, a peer does

bandwidth assumptions. In our use-case we assume many _trade with others at all since it waits for the single piece

users will have broadband. 400Kbps and 800Kbps are Clc}gedownload and then immediately exns.. To cpmpare.swtably

with Roulette, we changed the default piece size of BitTorrent

7Another testbed choice we considered was PlanetLab (http:/mwww.plant® D€ Similar to Roulette, i.e., the piece size is now 512Bytes.
lab.org/) but most nodes there have high bandwidth. Secondly, designWée also changed the source code so that we could accurately

custom overlays with different end-user bandwidths would have been Veleasure the exact time a BT peer took to download a file. We
difficult. .

8This version supports NPTL (New Posix Threading Library), to efficientl)did not ma_ke a'_’]y other Changes! for example Changing it to
support multiple threads. enforce stricter it-For-Tat. A BT peer can therefore keep (and
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serve) upto 50 pending requests if it needs to (as is defaultvire tested the time for different file sizes (from 4KB upto
BT) and thus Tit-For-Tat can be lax. 128KB). The performance results for normal HTTP, BitTorrent
Dijjer: Dijjer is a freely available P2P web-cache systerand Flashback are shown in Fig-7(a), Fig-7(b) and Fig-7(c)
developed using core concepts from Freenet (reference). Dijjespectively. In Fig-7(d) we compare the three systems side-
nodes form an Distributed Hash Table (reference) and wdby-side for one file size, 128KB. The spike in latency seen
files are also hashed so that a node can find a file fraah 96 nodes for some file sizes for BitTorrent and Flashback
the ‘closest’ node using DHT routing. During the searchinig due to the CPU on the cluster machines becoming the
process, the file is replicated along the search path. Similasttieneck running the large number of processes. Thus, we
to other P2P web-cache system, Dijjer nodes are long livedl not experiment with a larger number of nodes than 96.
(compared to Flashback) who co-operate with each other taFrom the Figures, we can make the following observations:

cache popular content and serve it to end nodes. We tried tQ |n normal webserver (HTTP-Apache) the end user latency
set up Dijjer so that nodes would behave more selfishly, i.e. grows linearly as a function of both increasing load and
join to receive a file and then leave as soon as they got the increasing file size. In comparison, both BitTorrent and
file. Trying to set up Dijjer this way turned out to be quite  Flashback scale logarithmically with increasing load. A
difficult. When there is Iarge churn, new incoming nodes turn P2P approach, therefore, offers Superior Sca|abi|ity and
out to be ‘closer’ to the file that nodes in the system; thus they end-user latency benefits.

get the file Straight from the web-server rather than from Othel’. Flashback handles load better than BitTorrent, both in
peers. Thus, a Dijjer system set up so that when nodes leave |ower end-user latency as well as the variability. For e.g.,
immediately performs as bad (or good) as a normal client- jn BT, the 90'"ile value can be almost three times the
server system. Due to this, we do not use it in our comparison average value while in Flashback it varies less than 30%.
test. Note that the Y-Axis of BitTorrent and Flashback are

HTTP Client-Server: For a baseline comparison, we different.

set up a Apacte2 web-server. Clients to this web-server , when the protocols are compared side-by-side, the dif-
are emulated using the UNIX command line program wget ference in the protocols become clear. For example, a

(version 1.9.1). BitTorrent peer takes 25 seconds on average to download
a 128KB file when 64 peers are started at once. A Flash-
B. Basic scalability back peer takes less than 15 seconds. This is because,

The goal of the basic scalability experiment is to test how in BitTorrent, many peers leave at the same time and the
the systems perform under ‘one-shot’ loads for various file ~remaining peers take time to reconnect and ramp up their
sizes and with different client bandwidths. For each system, a bandwidth. In contrast, Flashback peers are continually
server (or seeder) is started first. A certain number of clients trading with many peers and thus are less susceptible to
(BitTorrent peer, Flashback peer or wget process) are then €Xiting peers.
created concurrently and are asked to download a particulaEven with one-shot loads, the difference between the three
file. When a client/peer downloads the file, it immediatelgystems is easily perceptible. We know study the effects of
quits. The number of simultaneous clients are varied from 4 éven increased churn and its effects in the next section.

96. The upper limit is because that creates close to 8 peers on

each. of the linux cluster machines and CPU utilizaﬁon wheR Dynamic Stability Test for Flash Crowds

running Flashback nears close to 80%. Beyond this, the test .

results for Flashback start to get skewed and hence the limit.'0 €St the performance of the various protocols as they
Peers are asked to download files varying in size from 4kg Y§ould perform under flash traffic we designed a novel experi-
128KB. This again reflects types of files that might constitufgeNt called t_héStabmzed Pootest. There are two main goals

a web-page, for example, simple HTML files are usually gf the exper'lment: (a) To test whether a protocolstable
couple of KBs, CSS and javascript files are around 20—30KI§'§‘Oler a particular Io_ad and (b) To c_alculate the average enq-
and images are usually between 40-150KB. All clients and tH§€" delay that a client may experience when the server is
server have a maximum (symmetric) bandwidth. We test withider @ particular load. _

two network topologies — 400Kbps and 800Kbps. As noted Th? main goal Of this test is whether the systes‘m-f:
before, these are approximations to DSL like connectiondabilizes Peers are |nt.roduced at a _pamcular rate to ‘hit’ the
The requirement that peers exit immediately is to mimic totaprver. If the system s self-stab|l|z|ng, then the, _number of
selfish behavior. Even in single-shot loads, this creates Soﬁpgomplete peers does not keep growing but stabilizes around

churn since all peers do not finish at once. The peers that finfsrfertain number. _Incomplete peer are those which have_n’t
later have to deal with exiting peers. got the complete file yet. If the throughput of the system is

Experiment results: The results of the basic scalabilitylo\"’er thlanf t.he der‘r|1and placeg on new incoming peersl,f tf;]en
experiment are shown in Fig-7. The Y-axis plot the time if'® POO! of incomplete peers keeps growing. However, if the

milliseconds and the X-axis (in logscale) shows the number BYStem is self-stabilizing, then the throrl:ghputl 0‘; the sysltem
nodes that participated in the one-shot load. We run each te/§Ws @long with the hit-rate and thus the pool of incomplete

times and plot both average and 90% values. For each proto%?rs stabilizes. The self-stabilizing characteristic is extremely
' important for the self-scaling property of a cache-less P2P

http://www.apache.org dissemination system.
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Fig. 7. Basic scalability test w.r.t. network size and file size with 800kbps bandwidth nodes. X-axis is logscale.

In the experiment, we varied the incoming input rate from  For low load (upto 4 nodes/sec) BitTorrent and Flashback
1/second to 32/second (3.6K hits/hour to 115K hits/hour). The have almost equal latency. However, there is sharp rise
files that the peers requested were also varied. Every second, in latency time for BitTorrent after that. We conjecture
we checked the number of currently running peers or the pool- this is due to BitTorrent’s inability to handle high churn
size and stored the value. Every 10 seconds, we evaluated the effectively. The end-user latency for 32 nodes/sec for
maximum pool size in last 10 seconds. If this value was higher BitTorrent is over 20 seconds whereas it is less than 12
than the maximum in the previous 10 seconds, the maximum seconds in Flashback. Clearly, if BitTorrent were to be
pool size value was updated and the test continued. Else, we used as the data exchange protocol it would test many
assume the pool has stabilized and stop the test. The average users’ patience.

total time recorded byl the peers that participated in this test 1) Effect of end-user bandwidthdn this experiment we
is also recorded (in some tests we averaged over 800 peegjaluate the effect of end-user latency when the end-user
Experiment results: The results of the dynamic stability machines have a lower bandwidth capacity. Intuitively, the
experiment are shown in Fig-8. The Y-axis plot the time ifatency must increase since the system throughput as a whole
milliseconds and the X-axis (in logscale) shows the rate g§ reduced. We ignore HTTP’s performance since its behavior
which nodes arrive continually at the webserver. For eagh easily predictable. We compare BitTorrent and Flashback
protocol we tested the time for three different representand show the results in Fig-9(a), Fig-9(b), Fig-9(c).
tive file sizes (4KB (text), 64KB(small images) and 128KB \what is interesting is the difference in the trends in the two
(large images)). The performance results for normal HTTRyotocols for the 400Kbps network. The difference in latency
BitTorrent and Flashback are shown in Fig-8(a), Fig-8(b) arffows bigger with increasing load (number of nodes/sec) and
Fig-8(c) respectively. In Fig-8(d) we compare Flashback aiHe subsequent increased churn. Flashback scales extremely
BitTorrent side-by-side for one file size, 128KB. We trie@\/e” in this case. The average end user |atency grew On|y 4
running the experiment for 64 nodes/sec but again the CREconds from a load 2 nodes/sec to 32 nodes/sec (an increase
on the cluster machines became the bottleneck and skewedijtha second of latency for every doubling of load)whereas
results. We thus show results only for incoming rates upto §2 BitTorrent the latency increased by almost 15 seconds. The
nodes/sec. absolute latency in BitTorrent at 32nodes/sec is almost too long
From the Figures, we can make the following observationgr a good web experience — at more than half a minute. In
« We did not show all rates for HTTP because it did natomparison, the latency is just above 15 seconds in Flashback.
stabilize when the input rate was more than 8nodes/se@) Data Overhead:Here, we compare the average total
for 64KB files or larger. We show the latency for inputata received by a peer in BitTorrent and Flashback when
rate for 64KB file as a reference to latency time for 4KRlownloading a file. The amount of data that a peer actually
file. The difference in latency time is dramatic and show®ceives during the download process is greater than the actual
why webservers can so easily start “trashing”. file because of the overhead of meta-data exchange. In HTTP,
« Both Flashback and BitTorrent stabilize under loads uptbe data downloaded is the same as the file size (just a little
32nodes/sec. For BitTorrent, however, there is a shamger accounting for TCP and IP header overhead). Fig-10
increase when the load changes from 4 nodes/sec tsl®ws the average data received across increasing load on
nodes/sec but this increase is more smooth for largeerver to get a 128KB file. The overhead in Flashback is almost
incoming rates. We are currently studying why this hapgonstant (and in fact decreases with load) but in BitTorrent
pens. There are no such dramatic jumps in Flashback.ilnis a steady increase. Note that the varying parameter is
general, the end user latency grows logarithmically witthe load and not the file size, so changing the chunk size
increasing load for both BitTorrent and Flashback. Agaim BitTorrent will not change the trend of this graph. During
this shows the superior scaling of recruiting end users kigh churn, the overhead in a BitTorrent like protocol is
act as a distributed, self-scaling web-server. high due to large number of handshake messages. Flashback
o The difference in end-user latency between BitTorrehtas almost constant overhead in spite of increasing load
and Flashback is quite significant as shown in Fig-8(cjlue to the novel interval-based approach to exchanging and
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(a) HTTP Scalability (b) BitTorrent Scalability (c) Flashback Scalability (d) BitTorrent vs. Flashback

Fig. 8. Dynamic stabilization test w.r.t. increasing incoming rates of 800kbps bandwidth nodes. X-axis is logscale. HTTP does not stabilize with more than
8nodes/sec for files over 64KB.
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maintaining meta-data. This also explains why the end-ugeoopNet [21], the authors propose and implement a cache-
latency trends between Flashback and BitTorrent diverge. Widss approach. However, clients get whole files from others
the same end-user bandwidth, Flashback is able to provied clients are also assumed to be co-operative and stay in
better ‘system throughput’. Why the overhead drops at largjee system for a few minutes. Flashback works scalably even
load is something we are investigating closely. without these assumptions. The churn rate we handle is in the
Summary: P2P approaches are highly scalable and aoeder of seconds, a magnitude higher than what is assumed
ideal for building self-scaling web-servers. However, the prain CoopNet. Further, since clients usually get whole files
tocol must be explicitly optimized for small files and extremé CoopNet, the authors present techniques on how to find
churn. While BitTorrent shows good scaling trends the alhe closest or best peer using IP address prefix matching.
solute latency is far higher than what an end user might likd/e do not employ this in Flashback because the primary
Flashback, in comparison is both scalable with low end-usebjective in Flashback is not to find a few best peers but to
latency. get a lot of peers and download parts of file from them. In
Overhaul [22], the authors also explore a cache-less approach
VI. RELATED WORK AND FUTURE DIRECTIONS and wherein the file is split into chunks and clients get parts

Flashback is a cache-less approach to handle flash crowRfsthe file from each other. However, their approach requires
This approach was proposed as psuedoserving in [17] whér&hange to the HTTP protocol in order to achieve cllent—5|de.
clients have to agree to share content with other clients. Hoff@nsparency. Even if the proposed changes are accepted, it
ever, there is no mechanism (such as Tit-For-Tat) to actua uld take years before browsers and servers reflected this
enforce this and no working system with this technique. Ifh@nge. Additionally, the problem of clients behind NATs
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would still need to be addressed, probably requiring HTTébjects that are accessed by the members of the organization.
to run over UDP (like DHTTP [24]. Overhaul clients are alsdnfrastructure caches have many benefits including low latency;,
assumed to be co-operative and secondly, it is not clear hbandwidth savings to both the organization and the primary
well Overhaul would work in an extreme churn environmenteb-server and also importantly, transparency to the end user.
However, the experimental results presented strongly validatkese cache machines can be either standalone or participate
the the scalability benefits of a cache-less approach. [38]a larger cache network. How to form these cache-networks,
is a simulation based study that explored the benefits atié performance issues involved, etc. has received a large
usefulness of a cache-less approach and showed the poteatiabunt of research study (we defer to the survey in [31]).
bandwidth savings that may be gained. The study also high-this context, we wish to say that Flashback is not intended
lighted the problem of implementing a cache-less approaak a replacement for these infrastructure caches but rather as
due to peers being behind NATs. We deal with this isswesupplementary mechanism that is useful when Flash crowds
explicitly in Flashback and the design of an UDP baseppear inspite of web-caches or simply because a web-site
protocol and interval based chunk representation is a direldes not want its pages cached.
ramification of this constraint. Future Work: Flash crowds can appear inspite of web-

There have also been many other Peer-to-Peer approactashes due to low hit-rate, a wide and distributed set of
to solve the flash crowd problem but these operate wigieople who want the content or low capacity of the web-
the peers acting as caches, i.e., a cache-based approachsdorer itself. Further, this is exacerbated with growing dynamic
example, Coral [13], Squirrel [16], Kache [20], Backslash [27hnd customized content. Bandwidth bottleneck is only part of
PROOFS [28], and Dijjer [11]. Squirrel is designed to exploihe larger problem of a web site being unable to disseminate
organizational level peers while Coral and Kache are moigformation to a large audience. If the web-page is generated
generic. All four approaches use a distributed hash taldgnamically, the CPU can also become a bottleneck and there
(DHT) ( [6]) as their fundamental data structure. In thess active research on ways to tackle this [15], [25], [32].
P2P web-cache approaches, volunteer nodes form a distributeBllashback currently does not address either dynamic content
cache. When a end-user needs some content, it has to firsistreaming content. Since the end user browser becomes
contact one of the peers in the cache. This is accomplistediny web-server in Flashback, it is not inconceiveable that
either by requiring the user to rewrite the URL (as in Cordflashback can be used to handle dynamic data but the nature of
and Dijjer) or installing a proxy (as in Squirrel). Once a pedhe problem changes dramatically since all peers are no longer
is contacted and the URL request made to it, the peer perforinterested in the same content. Handling streaming content
a DHT ‘lookup’ to see if any other peer already has the welmay be easier, especially since peers may now stay longer
page. If no other peer is deemed to have the web-page, thghe system thereby causing less churn. We are currently
peer gets the web-page from the main web-site and this is treploring both these ideas.
returned to the end user. The web-page may also replicated
during this search process so that the popular a web page VII. CONCLUSIONS
becomes, the larger number of nodes it is cached in. Theln this paper we introduced a cache-less approach to handle
P2P web-cache is usually comprised of volunteer machiniéssh crowds at web-sites using a novel P2P data exchange
and not the end clients that are requesting a particular pageotocol, Roulette that works well in distributing small files
Therefore, even though the web-cache may be large it is otan extreme churn environment. However, we see Flashback
self-scaling and may still become a bottleneck. Secondly,ribt as a replacement for web-caches but as a supplementary
the web-page is set not to be cached by the web-site the welechanism that is useful when Flash crowds appear inspite
cache just adds to the latency in getting the web-page. Thirdghweb-caches or simply because a web-site does not want
the design of these systems, it is assumed that the voluntiéempages cached. Though Flashback has been designed from
machines are relatively long lived. Kache is unique in thithe ground up to maintain a seamless user experience, some
respect that it explicitly tackles the issue of high churn wheirewalls can still block P2P connections leading to explicit
volunteer machines are short lived. The lifetimes assumeduser intervention. Flashback is also currently designed only to
Kache, though, are still an order of magnitude larger than thdistribute static web-pages. We are currently exploring the use
assumed in Flashback. In Kache, the authors show that tha&fifFlashback for more dynamic data and use-cases.
systems performs well even when the churn rate is 10%-25%
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